Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T14:23:52.433Z Has data issue: false hasContentIssue false

Linear stability analysis and metastable solutions for a phase-field model

Published online by Cambridge University Press:  14 November 2011

A. Jiménez-Casas
Affiliation:
Departamento de Matemática Aplicada y Computatión, Universidad Pontificia Comillas de Madrid, Departamento de Matemática Aplicada, Universidad Politécnica de Madrid, Spain
A. Rodríguez-Bernal
Affiliation:
Departamento de Matemática Aplicada, Universidad Complutense de Madrid 28040, Madrid, Spain

Abstract

We study the linear stability of equilibrium points of a semilinear phase-field model, giving criteria for stability and instability. In the one-dimensional case, we study the distribution of equilibria and also prove the existence of metastable solutions that evolve very slowly in time.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Angenent, S.. The zero set of a solution of a parabolic equation. J. Heine Angew. Math. 390 (1988), 7996.Google Scholar
2Bates, P. W. and Zheng, S.. Inertial manifolds and inertial sets for the phase-field equations. J. Dynamics Diff. Eqns 4 (1992), 375398.CrossRefGoogle Scholar
3Brochet, D. and Hilhorst, D.. Universal attractor and inertial sets for the phase field model. Appl. Math. Lett. 4 (1991), 5962.Google Scholar
4Brochet, D., Chen, X. and Hilhorst, D.. Finite dimensional exponential atractor for the phase field model. Applicable Analysis 49 (1993), 197212.Google Scholar
5Bronsard, L. and Kohn, R. V.. On the slowness of phase boundary motion in one space dimension. Commun. Pure Appl. Math. 43 (1990), 987997.CrossRefGoogle Scholar
6Caginalp, G.. An analysis of a phase field model of a free boundary. Arch. Ration. Mech. Analysis 92 (1986), 205245.Google Scholar
7Caginalp, G.. The dynamics of a conserved phase field system: Stefan-like, Hele–Shaw, and Cahn-Hilliard models as asymptotic limits. IMA J. Appl. Math. 44 (1990), 7794.Google Scholar
8Caginalp, G.. Phase field models and sharp interface limits: some differences in subtle situations. Rocky Mountain J. Math. 21 (1991), 603616.CrossRefGoogle Scholar
9Caginalp, G. and Fife, P. C.. Dynamics of layered interfaces arising from phase boundaries. SI AM. J. Appl Math. 48 (1988), 506518.CrossRefGoogle Scholar
10Carr, J. and Pego, R. L.. Metastable patterns in solutions of ut = ε2u xx - f(u). Commun. Pure Appl. Math. 42 (1989), 523579.Google Scholar
11Carr, J. and Pego, R.. Very slow phase separation in one dimension (ed. Rasele, M. et al. Lecture Notes in Physics, no. 344, pp. 216226 (Berlin: Springer, 1989).Google Scholar
12Carr, J. and Pego, R.. Invariant manifolds for metastable patterns in ut = c2u xx - f(u). Proc. R. Soc. Edinb. A 116 (1990), 133160.CrossRefGoogle Scholar
13Chafee, N. and Infante, E. F.. A bifurcation problem for a nonlinear partial differential equation of parabolic type. Applicable Analysis 4 (1974), 1737.CrossRefGoogle Scholar
14Elliott, C. M. and Zheng, S.. Global existence and stability of solutions to the phase field equations. In Free boundary value problems (Oberwolfach, 1989), pp. 4658. International Series in Numerical Mathematics, no. 195 (Basel: Birkháuser, 1990).Google Scholar
15Fusco, G. and Hale, J. K.. Slow-motion manifolds, dormant instability, and singular perturbations. J. Dynamics Diff. Eqns 1 (1989), 7594.Google Scholar
16Grant, C. P.. Slow motion in one-dimensional Cahn–Morral systems. SIAM J. Math. Analysis 26 (1995), 2134.CrossRefGoogle Scholar
17Henry, D.. Geometric theory of semilinear parabolic equations. Lectures Notes in Mathematics, no. 840 (Berlin: Springer, 1981).CrossRefGoogle Scholar
18Jiménez-Casas, A.. Dinámica en dimensión finita: modelos de campos de fase y un termosifón cerrado. PhD thesis, Universidad Complutense de Madrid, Spain (1996).Google Scholar
19Matano, H.. Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. RIMS Kyoto Univ. 15 (1979), 401454.Google Scholar
20Matano, H.. Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation. J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 29 (1982), 401441.Google Scholar
21Modica, L.. The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Analysis 98 (1987), 123142.Google Scholar
22Modica, L. and Mortola, S.. II limite nella.T-convergenze di una famiglia di funzionalli ellitichi. Boll. Un. Math. It. A 14 (1977), 526529.Google Scholar
23Penrose, O. and Fife, P.. Thermodynamically consistent models of phase-field type for kinetics of phase transitions. Physica D43 (1990), 4462.Google Scholar
24Smoller, J. and Wasserman, A.. Global bifurcation of steady-state solutions. J. Diff. Eqns 39 (1981), 269290.Google Scholar
25Sternberg, P.. The effect of a singular perturbation on nonconvex variational problems. Arch. Ration. Mech. Analysis 101 (1988), 209260.CrossRefGoogle Scholar
26Zheng, S.. Global existence for a thermodynamically consistent model of phase field type. Diff. Int. Eqns 5 (1992), 241253.Google Scholar