Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T23:36:07.079Z Has data issue: false hasContentIssue false

Limit-point and limit-circle criteria for Sturm-Liouville equations with intermittently negative principal coefficients

Published online by Cambridge University Press:  14 November 2011

W. N. Everitt
Affiliation:
Department of Mathematics, University of Birmingham, Birmingham B15 2TT, England
I. W. Knowles
Affiliation:
Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama 35294, U.S.A.
T. T. Read
Affiliation:
Department of Mathematics, Western Washington University, Bellingham, Washington 98225, U.S.A.

Synopsis

Limit-point and limit-circle criteria are given for the generalised Sturm-Liouville differential expression

where

(i) p, q, and w are real-valued on [a, b),

(ii) p−1, q, w are locally Lebesgue integrable on [a, b),

(iii) w > 0 almost everywhere on [a, b) and the principal coefficient p is allowed toassume both positive and negative values.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Atkinson, F. V.. A class of limit-point criteria. In Spectral theory of differential operators, pp. 1335. Mathematics Studies 55, eds Knowles, Ian W. and Lewis, Roger T.(Amsterdam: North Holland, 1981).Google Scholar
2Atkinson, F. V.. Limit-n criteria of integral type. Proc. Roy. Soc. Edinburgh Sect. A 73 (1975), 167198.CrossRefGoogle Scholar
3Atkinson, F. V. and Evans, W. D.. On solutions of a differential equation which are not ofintegrable square. Math. Z. 127 (1972), 323332.CrossRefGoogle Scholar
4Brinck, I.. Self-adjointness and spectra of Sturm-Liouville operators. Math. Scand. 7 (1959), 219239.CrossRefGoogle Scholar
5Dunford, N. and Schwartz, J. T.. Linear Operators, Part II: Spectral theory. (New York: Interscience, 1963).Google Scholar
6Eastham, M. S. P.. On a limit-point method of Hartman. Bull. London Math. Soc. 4 (1972), 340344.CrossRefGoogle Scholar
7Eastham, M. S. P., Evans, W. D., and McLeod, J. B.. The essential self-adjointness of Schrodinger-type operators, Arch. Rational Mech. Anal. 60 (1976), 185204.CrossRefGoogle Scholar
8Evans, W. D.. On limit-point and Dirichlet-type results for second-order differential expressions. In Proc. Conf. Ordinary and Partial Differential Equations, Dundee. Lecture Notes in Mathematics 564, pp. 7892. (Berlin: Springer, 1976).Google Scholar
9Evans, W. D. and Zettl, A.. Interval limit-point criteria for differential expressions andtheir powers. J. London Math. Soc. 15 (1977), 119133.CrossRefGoogle Scholar
10Everitt, W. N. and Race, D.. On necessary and sufficient conditions for the existence of Caratheodory solutions of ordinary differential equations. Quaestiones Math. 2 (1978), 507513.CrossRefGoogle Scholar
11Friedlander, S. and Siegmann, W. L.. Internal waves in the ocean stratified with a variable buoyancy frequency. An. Acad. Brasil. Ciênc. 53 (1981), 213221.Google Scholar
12Halvorsen, S. G., in prep.Google Scholar
13Ismagilov, R. S.. On the self-adjointness of the Sturm-Liouville operator. Uspekhi Mat. Nauk 18 (1963), 161166.Google Scholar
14Knowles, I.. On essential self-adjointness for singular elliptic differential operators. Math. Ann. 227 (1977), 155172.CrossRefGoogle Scholar
15Knowles, I.. On the number of L2-solutions of second order linear differential equations. Proc. Roy. Soc. Edinburgh Sect. A 80 (1978), 113.CrossRefGoogle Scholar
16Knowles, I.. On stability conditions for second-order linear differential equations. J. Differential Equations 34 (1979), 179203.CrossRefGoogle Scholar
17Kuptsov, N. P.. Conditions of non-selfadjointness of a second-order linear differential operator. Dokl. Acad. Nauk 138 (1961), 767770.Google Scholar
18Levinson, N.. Criteria for the limit-point case for second-order linear differential operators. Časopis Pěst. Mat. 74 (1949), 1720.CrossRefGoogle Scholar
19Naimark, M. A.. Linear Differential Operators: Part II. (New York: Ungar, 1968).Google Scholar
20Read, T. T.. A limit-point criterion for −(py')' + qy. In Proc. Conf. Ordinary and Partial Differential Equations, Dundee. Lecture Notes in Mathematics 564, pp. 383390. (Berlin: Springer, 1976).Google Scholar
21Read, T. T.. A limit-point criterion for expressions with intermittently positive coefficients. J. London Math. Soc. (2) 15 (1977), 271276.CrossRefGoogle Scholar
22Read, T. T.. On the essential self-adjointness of powers of Schrodinger operators. Proc. Roy. Soc. Edinburgh Sect. A 97 (1984), 233246.CrossRefGoogle Scholar
23Sears, D. B.. Note on the uniqueness of the Green's functions associated with certain differential operators. Canad. J. Math. 2 (1950), 314325.CrossRefGoogle Scholar
24Weyl, H.. Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklüngen willkiirlicher Functionen. Math. Ann. 68 (1910), 220269.CrossRefGoogle Scholar