Lagrangian and Hamiltonian formalism for constrained variational problems
Published online by Cambridge University Press: 12 July 2007
Abstract
We consider solutions of Lagrangian variational problems with linear constraints on the derivative. More precisely, given a smooth distribution D ⊂ TM on M and a time-dependent Lagrangian L defined on D, we consider an action functional L defined on the set ΩPQ(M, D) of horizontal curves in M connecting two fixed submanifolds P, Q ⊂ M. Under suitable assumptions, the set ΩPQ(M, D) has the structure of a smooth Banach manifold and we can thus study the critical points of L. If the Lagrangian L satisfies an appropriate hyper-regularity condition, we associate to it a degenerate Hamiltonian H on TM* using a general notion of Legendre transform for maps on vector bundles. We prove that the solutions of the Hamilton equations of H are precisely the critical points of L. In the particular case where L is given by the quadratic form corresponding to a positive-definite metric on D, we obtain the well-known characterization of the normal geodesics in sub-Riemannian geometry (see [8]). By adding a potential energy term to L, we obtain again the equations of motion for the Vakonomic mechanics with non-holonomic constraints (see [6]).
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 132 , Issue 6 , December 2002 , pp. 1417 - 1437
- Copyright
- Copyright © Royal Society of Edinburgh 2002
- 8
- Cited by