Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-01T01:36:49.282Z Has data issue: false hasContentIssue false

IV.—On the Integrals of Hua and James.*

Published online by Cambridge University Press:  14 February 2012

Henry Jack
Affiliation:
University of Dundee.

Synopsis

Recently a power series representation of Hypergeometric functions with matrix argument has been established. This representation involves a special type of spherical function from the theory of semi-simple Lie groups, called the zonal polynomials. A general theory of these polynomials is well established; however an explicit representation of them is lacking. This paper considers two integrals which are related to this explicit representation. The final paragraph considers a third integral which gives an application of a result from a previous paper of the author.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Anderson, T. W., 1958. An Introduction to Multivariate Statistical Analysis. New York: Wiley; London: Chapman and Hall.Google Scholar
Bochner, S., 1944. “Group Invariance of Cauchy's Formula in Several Variables”, Ann. Math., 45, 686707.CrossRefGoogle Scholar
Carslaw, H. S., and Jaeger, J. C., 1948. Operational Methods in Applied Mathematics. 2nd Edn.O.U.P.Google Scholar
Cartan, H., Séminaire de, 1958. Fonctions Automorphes. Vols. I and II. Paris: Seer. Math.Google Scholar
Constantine, A. G., 1963. “Some non-central distribution problems in Multivariate Analysis”, Ann. Math. Statist., 34, 12701285.Google Scholar
Helgason, S., 1962. Differential Geometry and Symmetric Spaces. New York and London: Academic Press.Google Scholar
Herz, C. S., 1955. “Bessel Functions of Matrix Argument”, Ann. Math., 61, 474523.Google Scholar
Hsu, P. L., 1953. “On symmetric, orthogonal and skew-symmetric matrices”, Proc. Edinb. Math. Soc., 10, 3744.CrossRefGoogle Scholar
Hua, L. K., 1963. “Harmonie Analysis of functions of several complex variables in the Classical Domains”, Transi. Math. Monogr. Am. Math. Soc., 6.Google Scholar
Hurwitz, A., 1898. “Uber die Erzeugung der Invarianten durch Integration”, Nachr. Ges. Wiss. Göttingen, 1898, 309316.Google Scholar
Ingham, A. E., 1933. “An integral that occurs in Statistics”, Proc. Camb. Phil. Soc. Math. Phys. Sci., 29, 271276.Google Scholar
Jack, H., 1965. “A generalization of Dirichlet's Multiple Integral”, Proc. Edinb. Math. Soc., 14, 233237.CrossRefGoogle Scholar
Jack, H., 1966. “Jacobians of transformations involving orthogonal matrices”, Proc. Roy. Soc. Edinb., 67A, 81103.Google Scholar
Jack, H., 1967. “A Matrix Analogue of the Integral ”, Proc. Roy. Soc. ja Edinb., 67A, 205214.Google Scholar
James, A. T., 1955 a. “The non-central Wishart Distribution”, Proc. Roy. Soc., A, 229, 364366.Google Scholar
James, A. T., 1955 b. “A generating function for averages over the orthogonal group”, Proc Roy. Soc., A, 229, 367375.Google Scholar
James, A. T., 1960. “The distribution of latent roots of the covariance matrix”, Ann. Math. Statist., 31, 151158.Google Scholar
James, A. T.., 1961. “Zonal polynomials for real positive definite symmetric matrices”, Ann. Math., 74, 456469.Google Scholar
James, A. T., 1962. “The distribution of non-central means with known covariance”, Ann. Math. Statist., 32, 874882.Google Scholar
James, A. T., 1964. “Distributions of matrix variates and latent roots derived from normal samples”, Ann. Math. Statist., 35, 475501.CrossRefGoogle Scholar
Roy, S. N., 1957. Some aspects of Multivariate Analysis. New York: Wiley.Google Scholar
Siegel, C. L., 1935. “Uber die analytische Theorie der quadratischen Formen”, Ann. Math., 36, 527606.CrossRefGoogle Scholar
Watson, G. N., 1944. A Treatise on the Theory of Bessel Functions. 2nd Edn. C.U.P.Google Scholar
Wishart, J., 1928. “The generalized product moment distribution in samples from a normal multivariate population”, Biometrika, 20A, 3243.CrossRefGoogle Scholar