Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T09:03:07.146Z Has data issue: false hasContentIssue false

Integral inequalities for concave functions with applications to special functions

Published online by Cambridge University Press:  14 November 2011

J. L. Brenner
Affiliation:
10 Phillips Road, Palo Alto, California 94303-2857, U.S.A.
Horst Alzer
Affiliation:
Department of Mathematics, Applied Mathematics & Astronomy, University of South Africa, Pretoria, South Africa

Synopsis

In this paper we prove refinements, extensions and counterparts of known integral inequalities for concave functions. Furthermore, we apply our results to find new inequalities for some special functions and mean values.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Alzer, H.. On Stolarsky's mean value family. Internat. J. Math. Ed. Sci. Tech. 20 (1989), 186189.Google Scholar
2Alzer, H.. Ungleichungen für Mittelwerte. Arch. Math. 47 (1986), 422426.CrossRefGoogle Scholar
3Alzer, H.. A converse of the arithmetic mean-geometric mean inequality. Rev. Un. Mat. Argentina (to appear).Google Scholar
4Andersson, B. J.. An inequality for convex functions. Normat 6 (1958), 2526.Google Scholar
5Barnes, D. C.. Some complements of Hölder's inequality. J. Math. Anal. Appl. 26 (1969), 8287.CrossRefGoogle Scholar
6Beckenbach, E. F. and Bellman, R.. Inequalities (Berlin: Springer, 1961).CrossRefGoogle Scholar
7Berwald, L.. Verallgemeinerung eines Mittelwertsatzes von J. Favard für positive konkave Funktionen. Acta Math. 79 (1947), 1737.CrossRefGoogle Scholar
8Bremermann, H. J.. Complex convexity. Trans. Amer. Math. Soc. 82 (1956), 1751.CrossRefGoogle Scholar
9Bullen, P. S., Mitrinovi, D. S.ć and Vasi, P. M.ć. Means and Their Inequalities (Dordrecht: Reidel, 1988).CrossRefGoogle Scholar
10Clausing, A.. Kantorovich-type inequalities. Amer. Math. Monthly 89 (1982), 314330.CrossRefGoogle Scholar
11Everitt, W. N.. A trigonometrical inequality. Math. Gaz. 44 (1960), 5254.CrossRefGoogle Scholar
12Favard, J.. Sur les valeurs moyennes. Bull. Sci. Math. (2) 57 (1933), 5464.Google Scholar
13Fejér, L.. Über die Fourierreihen, II. (in Hungarian). Math. Naturwiss. Anz. Ungar. Akad. Wiss. 24 (1906), 369390.Google Scholar
14Fink, A. M.. Mean value inequalities. SIAM J. Math. Anal. 8 (1977), 785791.CrossRefGoogle Scholar
15Hardy, G. H., Littlewood, J. E. and Pólya, G.. Inequalities (Cambridge: Cambridge University Press, 1952).Google Scholar
16Kantorovi, L. V.ć. Functional analysis and applied mathematics (in Russian). Uspekhi Mat. Nauk (N.S.) 3, No. 6 (28) (1948), 89185; translated into English by Benster, C. D., Nat. Bur. Standards Rep. No. 1509, 1952.Google Scholar
17Karamata, J.. Sur certaines inégalités relatives aux quotients et à la difference de ∫ fg et ∫ fg. Acad. Serbe Sci. Publ. Inst. Math. 2 (1948), 131145.Google Scholar
18Karlin, S. and Ziegler, Z.. Some inequalities for generalized concave functions. J. Approx. Theory 13 (1975), 276293.CrossRefGoogle Scholar
19Lacković, I. B. and Stankovi, M. S.ć. On Hadamard's integral inequalities for convex functions. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 412–460 (1979), 8992.Google Scholar
20Leach, E. B. and Sholander, M. C.. Extended mean values. Amer. Math. Monthly 85 (1978), 8490.CrossRefGoogle Scholar
21Lupas, A.. A generalisation of Hadamard's inequalities for convex functions. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 544–576 (1976), 115121.Google Scholar
22Lupas, A.. On two inequalities of Karamata. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 602–633 (1978), 119123.Google Scholar
23Maksimović, D. M.. A short proof of generalized Hadamard's inequalities. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 634–677 (1979), 126128.Google Scholar
24Mavlo, D.. Solution of Problem 70. H. Math. Gaz. 71 (1987), 149150.Google Scholar
25Milovanović, G. V. and Ž, I.. Milovanović. A generalization of Chebyshev inequality for convex sequences of order k. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 735–765 (1982), 2831.Google Scholar
26Mitrinović, D. S.. Analytic Inequalities (New York: Springer, 1970).CrossRefGoogle Scholar
27Mitrinović, D. S. and Lacković, I. B.. Hermite and convexity. Aequationes Math. 28 (1985), 229232.CrossRefGoogle Scholar
28Mitrinović, D. S. and Pečarić, J. E.. Problem 1530. Crux Math. 16 (1990), 75.Google Scholar
29Pólya, G. and Szegö, G.. Aufgaben und Lehrsätze aus der Analysis, I (Berlin: Springer, 1970).CrossRefGoogle Scholar
30Roberts, A. W. and Varberg, D. E.. Convex Functions (New York: Academic Press, 1973).Google Scholar
31Ross, D. K. and Mahajan, A.. On enveloping series for some of the special functions, and on integral inequalities involving them. In General Inequalities 2, ed. Beckenbach, E. F., pp. 161175 (Basel: Birkhäuser, 1980).CrossRefGoogle Scholar
32Schweitzer, P.. An inequality concerning the arithmetic mean (in Hungarian). Math. Phys. Lapok 23 (1914), 257261.Google Scholar
33Shepp, L.. Solution of Problem 4954. Amer. Math. Monthly 69 (1962), 321322.Google Scholar
34Stanković, L. R.. On an inequality for convex functions of order k. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 461–497 (1974), 4750.Google Scholar
35Stanković, L. R. and Ž, I.. Milovanovićc. Some inequalities for convex functions. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 678–715 (1980), 191198.Google Scholar
36Stolarsky, K. B.. Generalizations of the logarithmic mean. Math. Mag. 48 (1975), 8792.CrossRefGoogle Scholar
37Vasi, P. M.ć. On an inequality for convex functions. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 391–409 (1972), 6770.Google Scholar
38Vasić, P. M. and Lacković, I. B.. On an inequality for convex functions. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 461–497 (1974), 6366.Google Scholar
39Vasić, P. M. and Lacković, I. B.. Some complements to the paper “On an inequality for convex functions”. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 544–576 (1976) 459–62.Google Scholar
40Vasić, P. M. and Lacković, I. B.. Notes on convex functions I: A new proof of Hadamard's inequalities. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 577–598 (1977), 2124.Google Scholar
41Vasić, P. M., Lacković, I. B. and Maksimović, D. M.. Notes on convex functions IV: On Hadamard's inequalities for weighted arithmetic means. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 678–715 (1980), 199205.Google Scholar
42Wilkins, J. E.. The average of the reciprocal of a function. Proc. Amer. Math. Soc. 6 (1955), 806815.CrossRefGoogle Scholar