Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T02:00:05.707Z Has data issue: false hasContentIssue false

Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains*

Published online by Cambridge University Press:  14 November 2011

Donato Fortunato
Affiliation:
Dipartimento di Matematica, Università, Campus Universitario, Via G. Fortunato, 70125 Bari, Italy
Enrico Jannelli
Affiliation:
Dipartimento di Matematica, Università, Campus Universitario, Via G. Fortunato, 70125 Bari, Italy

Synopsis

We consider the boundary value problem

where Ω ⊂ ℝn is a bounded domain, n≧3, 2* = 2n/(n − 2) is the critical exponent for the Sobolev embedding and λ is a real positive parameter. We prove the existence of infinitely many solutions of (*) when Ω exhibits suitable symmetries.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ambrosetti, A. and Rabinowitz, P. H.. Dual variational methods in critical point theory and applications. J. Fund. Anal. 14 (1973), 349381.CrossRefGoogle Scholar
2Aubin, T.. Problems isoperimetriques et espaces de Sobolev. J. Differential Geom. 11 (1976), 573598.CrossRefGoogle Scholar
3Brézis, H. and Nirenberg, L.. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36 (1983), 437477.CrossRefGoogle Scholar
4Brézis, H.. Some variational Problems with lack of compactness. Proceedings of the Berkeley Symposium on Nonlinear Functional Analysis ed. Browder, F. (1986), 165201.Google Scholar
5Brézis, H. and Kato, T.. Remarks on the Schrodinger operator, with singular complexpotential. J. Math. Pures Appl. 58 (1979), 137151.Google Scholar
6Capozzi, A., Fortunato, D. and Palmieri, G.. An existence result for nonlinear elliptic problems involving critical Sobolev exponent. Ann. Inst. H. Poincaré Analyse Nonlinéaire 2 (1985), 463470.CrossRefGoogle Scholar
7Cerami, G., Fortunato, D. and Struwe, M.. Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents. Ann. Inst. H. Poincare Analyse Nonlinéaire 1 (1984), 341350.CrossRefGoogle Scholar
8Lions, P. L.. The concentration-compactness principle in the calculus of variations, the limit case, Part I and II Rev. Mat. Iber. 1–2 (1985), 145201; 45–121.CrossRefGoogle Scholar
9Luckhaus, S.. Existence and regularity of weak solutions to the Dirichlet problem for semilinear elliptic systems of high order. J. Reine Angew. Math. 306 (1979), 192207.Google Scholar
10Struwe, M.. A global Compactness Result for Elliptic Boundary Value Problems Involving Limiting Nonlinearities. Math. Z. 187 (1984), 511517.CrossRefGoogle Scholar
11Struwe, M.. Superlinear elliptic boundary value problems with rotational symmetry. Arch. Math. 39 (1982), 233240.CrossRefGoogle Scholar
12Talenti, G.. Best constants in Sobolev inequality. Ann. Mat. Pura Appl. 110 (1976), 353372.CrossRefGoogle Scholar
13Trudinger, N.. Remarks concerning the conformal deformation of Riemannian structure on compact manifolds. Ann. Scuola Norm. Sup. Pisa 22 (1968) 265274.Google Scholar