Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T16:57:49.294Z Has data issue: false hasContentIssue false

Immediate smoothing and global solutions for initial data in L1 × W1,2 in a Keller–Segel system with logistic terms in 2D

Published online by Cambridge University Press:  02 September 2020

Johannes Lankeit*
Affiliation:
Institut für Mathematik, Universität Paderborn, Warburger Str. 100, 33098Paderborn, Germany ([email protected])

Abstract

This paper deals with the logistic Keller–Segel model

\[ \begin{cases} u_t = \Delta u - \chi \nabla\cdot(u\nabla v) + \kappa u - \mu u^2, \\ v_t = \Delta v - v + u \end{cases} \]
in bounded two-dimensional domains (with homogeneous Neumann boundary conditions and for parameters χ, κ ∈ ℝ and μ > 0), and shows that any nonnegative initial data (u0, v0) ∈ L1 × W1,2 lead to global solutions that are smooth in $\bar {\Omega }\times (0,\infty )$.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainseba, B., Bendahmane, M. and Noussair, A.. A reaction-diffusion system modeling predator-prey with prey-taxis. Nonlinear Anal. Real: World Appl. 9 (2008), 20862105.CrossRefGoogle Scholar
Andasari, V., Gerisch, A., Lolas, G., South, A. P. and Chaplain, M. A. J.. Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J. Math. Biol. 63 (2011), 141171.CrossRefGoogle ScholarPubMed
Bellomo, N., Bellouquid, A., Tao, Y. and Winkler, M.. Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25 (2015), 16631763.CrossRefGoogle Scholar
Biler, P.. Local and global solvability of some parabolic systems modelling chemotaxis. Adv. Math. Sci. Appl. 8 (1998), 715743.Google Scholar
de la Vallée Poussin, C.. Sur l'intégrale de Lebesgue. Trans. Am. Math. Soc. 16 (1915), 435501.Google Scholar
DiBenedetto, E.. On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients. Ann. Scuola Norm. Sup: Pisa Cl. Sci. (4) 13 (1986), 487535.Google Scholar
Dunford, N. and Schwartz, J. T.. Linear operators. I. General theory. Pure and applied mathematics, vol. 7 (New York, London: Interscience Publishers, 1958).Google Scholar
Friedman, A.. Partial differential equations (New York-Montreal, Que.-London: Holt: Rinehart and Winston Inc., 1969).Google Scholar
Fuest, M.. Finite-time blow-up in a two-dimensional Keller–Segel system with an environmental dependent logistic source. Nonlinear Anal. Real World Appl. 52 (2020), 103022.CrossRefGoogle Scholar
Heihoff, F.. On the existence of global smooth solutions to the parabolic-elliptic Keller–Segel system with irregular initial data. preprint.Google Scholar
Herrero, M. A. and Velazquez, J. J. L.. Singularity patterns in a chemotaxis model. Math. Ann. 306 (1996), 583623.CrossRefGoogle Scholar
Herrero, M. A. and Velázquez, J. J. L.. A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Sup: Pisa Cl. Sci. (4) 24 (1997), 633683.Google Scholar
Horstmann, D.. From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I. Jahresber. Dtsch. Math.-Ver. 105 (2003), 103165.Google Scholar
Horstmann, D. and Wang, G.. Blow-up in a chemotaxis model without symmetry assumptions. Eur. J. Appl. Math. 12 (2001), 159177.CrossRefGoogle Scholar
Jäger, W. and Luckhaus, S.. On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soc. 329 (1992), 819.CrossRefGoogle Scholar
Keller, E. F. and Segel, L. A.. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970), 399415.CrossRefGoogle ScholarPubMed
Ladyženskaja, O. A., Solonnikov, V. A. and Ural'ceva, N. N.. Linear and quasilinear equations of parabolic type.Translated from the Russian by S. Smith: Translations of Mathematical Monographs, vol. 23. (Providence, R.I.: American Mathematical Society, 1968).CrossRefGoogle Scholar
Lankeit, J.. Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source. J Differ. Equ. 258 (2015), 11581191.CrossRefGoogle Scholar
Lankeit, J. and Winkler, M.. Facing low regularity in chemotaxis systems. Jahresber. Dtsch. Math.-Ver. 122 (2020), 3564.CrossRefGoogle Scholar
Lieberman, G. M.. Second order parabolic differential equations (River Edge, NJ: World: Scientific Publishing Co. Inc., 1996).CrossRefGoogle Scholar
Mizoguchi, N. and Winkler, M.. Blow-up in the two-dimensional parabolic Keller–Segel system. 2013. Preprint.Google Scholar
Nagai, T.. Global existence and blowup of solutions to a chemotaxis system. In Proceedings of the Third World Congress of Nonlinear Analysts, Part 2 (Catania, 2000), vol. 47, pp. 777–787 (2001).Google Scholar
Nakaguchi, E. and Osaki, K.. Global existence of solutions to an n-dimensional parabolic–parabolic system for chemotaxis with logistic-type growth and superlinear production. Osaka J. Math. 55 (2018), 5170.Google Scholar
Nirenberg, L.. On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa (3) 13 (1959), 115162.Google Scholar
Osaki, K. and Yagi, A.. Global existence for a chemotaxis-growth system in ℝ2. Adv. Math. Sci. Appl. 12 (2002), 587606.Google Scholar
Tello, J. I. and Winkler, M.. A chemotaxis system with logistic source. Commun. Partial: Differ. Equ. 32 (2007), 849877.CrossRefGoogle Scholar
Tiel, J. V.. Convex analysis: an introductory text, (Chichester: John Wiley, 1984).Google Scholar
Viglialoro, G.. Boundedness properties of very weak solutions to a fully parabolic chemotaxis-system with logistic source. Nonlinear Anal. Real World Appl. 34 (2017), 520535.CrossRefGoogle Scholar
Viglialoro, G. and Woolley, T. E.. Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth. Discrete Contin. Dyn. Syst. Ser. B 23 (2018), 30233045.Google Scholar
Winkler, M.. Aggregation vs global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248 (2010), 28892905.CrossRefGoogle Scholar
Winkler, M.. Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35 (2010), 15161537.CrossRefGoogle Scholar
Winkler, M.. Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384 (2011), 261272.CrossRefGoogle Scholar
Winkler, M.. Finite-time blow-up in low-dimensional Keller–Segel systems with logistic-type superlinear degradation. Z. Angew. Math. Phys. 69 (2018), 40, Art. 69.CrossRefGoogle Scholar
Winkler, M.. How strong singularities can be regularized by logistic degradation in the Keller–Segel system?. Ann Mat. Pura Appl. (4) 198 (2019), 16151637.CrossRefGoogle Scholar
Winkler, M.. Instantaneous regularization of distributions from (C 0)* × L 2 in the one-dimensional parabolic Keller–Segel system. 2019. preprint.CrossRefGoogle Scholar
Winkler, M.. The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in L 1. Adv. Nonlinear Anal. 9 (2020), 526566.CrossRefGoogle Scholar
Xiang, T.. How strong a logistic damping can prevent blow-up for the minimal Keller–Segel chemotaxis system?. J. Math. Anal. Appl. 459 (2018), 11721200.CrossRefGoogle Scholar
Xiang, T.. Sub-logistic source can prevent blow-up in the 2D minimal Keller–Segel chemotaxis system. J. Math. Phys. 59 (2018), 081502, 11.CrossRefGoogle Scholar
Zhigun, A.. Generalized global supersolutions with mass control for systems with taxis. SIAM J. Math. Anal. 51 (2019), 24252443.CrossRefGoogle Scholar