Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T02:07:14.006Z Has data issue: false hasContentIssue false

Hopf bifurcation for equivariant conservative and time-reversible systems

Published online by Cambridge University Press:  14 November 2011

A. Vanderbauwhede
Affiliation:
Instituut voor theoretische mechanika, Rijksuniversiteit Gent, Krijgslaan 281, B-9000 Gent, Belgium

Synopsis

We study the bifurcation of small periodic solutions at a non-semi-simple 1:1-resonance in equivariant conservative or equivariant time-reversible systems. By using an equivariant Liapunov-Schmidt method and restricting to solutions with an appropriate isotropy, we reduce the problem to a scalar bifurcation equation. The analysis of this equation shows a bifurcation behaviour similar to that found for the Hamiltonian Hopf bifurcation.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bridges, T.. Branching of periodic solutions in the neighborhood of a Krein instability, (preprint, 1989).Google Scholar
2Cushman, R. and Sanders, J. A.. Nilpotent normal forms and representation theory of sl(2, R). In Multi-parameter Bifurcation Theory, eds Golubitsky, M. and Guckenheimer, J., Contemporary Mathematics 56, 3151 (Providence, R. I.: American Mathematical Society, 1986).CrossRefGoogle Scholar
3Devaney, R.. Reversible diffeomorphisms and flows. Trans. Amer. Math. Soc. 218 (1976), 89113.CrossRefGoogle Scholar
4Elphick, C., Tirapegui, E., Brachet, M., Coullet, P. and Iooss, G.. A simple global characterization for normal forms of singular vector fields. Phys. D 29 (1987), 95127.CrossRefGoogle Scholar
5Golubitsky, M., Stewart, I. and Schaeffer, D.. Singularities and Groups in Bifurcation Theory, vol. II, Applied Mathematical Sciences 69 (New York: Springer, 1988).CrossRefGoogle Scholar
6Golubitsky, M., Krupa, M. and Lim, C.. Time-reversibility and particle sedimentation, (preprint, 1989).Google Scholar
7Hale, J. K.. Ordinary Differential Equations (New York: Wiley, 1969).Google Scholar
8Meyer, K. R.. Generic bifurcations in Hamiltonian systems. In Dynamical Systems—Warwick 1974, Lecture Notes in Mathematics 468, 6270. (Berlin: Springer, 1974).Google Scholar
9Montaldi, J., Roberts, M. and Stewart, I.. Periodic solutions near equilibria of symmetric Hamiltonian systems. Philos. Trans. Roy. Soc. London 325 (1988), 237293.Google Scholar
10Moser, J.. Periodic orbits near an equilibrium and a theorem by Alan Weinstein. Comm. Pure Appl. Math. 29 (1976), 727747.CrossRefGoogle Scholar
11Sanders, J. A., A. Vanderbauwhede and J.-C. van der Meer. Periodic orbits for the degenerate Hamiltonian Hopf bifurcation (in prep.).Google Scholar
12Sevryuk, M.. Reversible systems, Lecture Notes in Mathematics 1211 (New York: Springer, 1986).CrossRefGoogle Scholar
13Vanderbauwhede, A.. Local bifurcation and symmetry, Research Notes in Mathematics 75 (London: Pitman, 1982).Google Scholar
14Vanderbauwhede, A.. Families of periodic solutions for autonomous systems. In Dynamical Systems II, eds Bednarek, A. and Cesari, L., pp. 427446 (New York: Academic Press, 1982).Google Scholar
15Vanderbauwhede, A.. Centre manifolds, normal forms and elementary bifurcations. In Dynamics Reported, Vol. 2, eds Kirchgraber, U. and Walther, H. O., pp. 89169 (New York: Wiley/Teubner, 1989).CrossRefGoogle Scholar
16Vanderbauwhede, A.. Bifurcation of periodic solutions, (in prep.).Google Scholar
17van der Meer, J.-C.. The Hamiltonian Hopf bifurcation, Lecture Notes in Mathematics 1160 (Berlin: Springer 1985).CrossRefGoogle Scholar
18van der Meer, J.-C.. Hamiltonian Hopf bifurcation with symmetry (preprint, 1988).Google Scholar
19Weinstein, A.. Normal modes for non-linear Hamiltonian systems. Invent. Math. 20 (1973), 4757.CrossRefGoogle Scholar