No CrossRef data available.
Published online by Cambridge University Press: 14 February 2012
The group of a harmonic elliptic quartic has exceptional action on the edges of the self-polar tetrahedron, singling out one pair of opposite edges. Geometrical explanations are given. One concerns the possession by each of these two edges of a certain harmonic tetrad constructible in three ways. The same constructions yield, for a general quartic, three distinct tetrads on each edge of its tetrahedron, with a related fourth. The cases of exceptional overlap of these tetrads are examined: they occur for quartics of moduli 0, ∞ and — 32/49.