Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-24T02:35:23.940Z Has data issue: false hasContentIssue false

A gradient estimate on a manifold with convex boundary

Published online by Cambridge University Press:  14 November 2011

Zhongmin Qian
Affiliation:
Department of Mathematics, Imperial College of Science, Technology and Medicine, 180 Queen's Gate, London SW7 2BZ, U.K

Abstract

We present a simple probability approach for establishing a gradient estimate for a solution of an elliptic equation on a compact Riemannian manifold with convex boundary, or on a noncompact complete manifold. Our method can also be applied to derive a similar gradient estimate for a nonlinear parabolic equation, and an abstract gradient estimate for a Markov semigroup.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bakry, D.. Un critére de non-explosion pour certains diffusions sur une variété riemannienne compléte. C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), 23–6.Google Scholar
2Bakry, D. and Emery, M.. Diffusions hypercontractive. Séminaire de Probabilités XIX, Lecture Notes in Mathematics 1123, 411–33 (Berlin: Springer, 1985).Google Scholar
3Donnelly, H. and Li, P.. Lower bounds for eigenvalues of Riemannian manifolds. Michigan Math. J. 29(1982), 149–61.Google Scholar
4Elworthy, K. D.. Geometric aspects of diffusions on manifolds. In Ecole d'été de probabilités de saint flour XV–XVII, 1985–1987, Lecture Notes in Mathematics 1362, 276425 (Berlin: Springer, 1987).Google Scholar
5Elworthy, K. D.. Stochastic flows on Riemannian manifolds. In Diffusion Processes and Related Problems in Analysis, Vol. II, 3772 (Boston: Birkhaüser, 1992).Google Scholar
6Elworthy, K. D. and Rosenberg, S.. Generalized Bochner theorems and the spectrum of complete manifolds. Acta Appl. Math. 12 (1988), 133.CrossRefGoogle Scholar
7Friedman, A.. Partial Differential Equations of Parabolic Type (New York: Prentice-Hall, 1964).Google Scholar
8Hsu, E.. Logarithmic Sobolev inequalities on path spaces (Preprint, 1994).Google Scholar
9Ikeda, N. and Watanabe, S.. Stochastic Differential Equations and Diffusion Processes (Amsterdam: North-Holland, 1981).Google Scholar
10Karatzas, I. and Shreve, S. E.. Brownian Motion and Stochastic Calculus (Berlin: Springer, 1988).CrossRefGoogle Scholar
11Malliavin, P.. Annulation de cohomologie et calcul des perturbations dans L 2. Bull. Sci. Math. 100 (1976), 331–6.Google Scholar
12Méritet, A.. Théorem d'Annulation pour la cohomologie absolue d'une variété riemannienne a bord. Bull. Sci. Math. Sér. 2 103 (1979), 379400.Google Scholar
13Stroock, D. W. and Varadhan, S. R. S.. Diffusion processes with boundary conditions. Comm. Pure Appl. Math. 24 (1971), 147225.CrossRefGoogle Scholar