No CrossRef data available.
Article contents
Geometry related to the key del Pezzo surface and the associated mapping of plane cubics
Published online by Cambridge University Press: 14 November 2011
Synopsis
When the points of a projective space [9] map ternary cubics the maps of perfect cubes are the points of a del Pezzo surface F. Several manifolds linked with F are listed and the cubics mapped on these are noted. A new approach leads to the first of Aronhold's two invariants.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 107 , Issue 1-2 , 1987 , pp. 75 - 86
- Copyright
- Copyright © Royal Society of Edinburgh 1987
References
1Aronhold, S.. Zur Theorie der homogenen Functionen dritten Grades von drei Variablen. J. Math. 39 (1849), 140–159.Google Scholar
5Pezzo, P. del. Sugli spazi tangenti ad una superficie o ad una varieta immersa in uno spazio di piu dimensioni. Rend. Ace. Napoli 25 (1886), 176–180.Google Scholar
6Edge, W. L.. Sylvester's unravelment of a ternary quartic. Proc. Roy. Soc. Edinburgh Sect. A 61 (1942), 247–259.Google Scholar
7Edge, W. L.. The pairing of del Pezzo quintics. J. London Math. Soc. (2) 27 (1983), 402–412.CrossRefGoogle Scholar
8Enriques, F. and Chisini, O.. Teoria geometrica delle equazioni e delle funzioni algebriche II (Bologna: Nicola Zannichelli, 1918).Google Scholar
9Grace, J. H. and Young, A.. The algebra of invariants (London: Cambridge University Press, 1903).Google Scholar
11Salmon, G.. Lessons introductory to the modern higher algebra, 3rd edition (Dublin: Hodges, Foster, and Co., 1876).Google Scholar
12Salmon, G.. A treatise on conic sections, 6th edition (London: Longmans, Green, and Co., 1879).Google Scholar
13Semple, J. G. and Roth, L.. Introduction to algebraic geometry (Oxford: Oxford University Press, 1949).Google Scholar
14Sylvester, J. J.. On the principles of the calculus of forms. Cambridge and Dublin Math. J. 7 (1852), 82–97; Mathematical Papers I, 284–327.Google Scholar
15Timms, G.. The nodal cubic surfaces and the surfaces from which they are derived by projection. Trans. Roy. Soc. London A119 (1928), 213–248.Google Scholar