Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-22T12:51:04.117Z Has data issue: false hasContentIssue false

Genericity of the multibump dynamics for almost periodic Duffing-like systems

Published online by Cambridge University Press:  14 November 2011

Francesca Alessio
Affiliation:
Dipartimento di Matematica del Politecnico di Torino, Corso Duca degli Abruzzi, 24 – I 10129 Torino, Italy ([email protected])
Paolo Caldiroli
Affiliation:
Scuola Internazionale Superiore di Studi Avanzati, via Beirut, 2-4 – I 34013 Trieste, Italy ([email protected])
Piero Montecchiari
Affiliation:
Dipartimento di Matematica dell'Università di Trieste, Piazzale Europa, 1 – I 34127 Trieste, Italy ([email protected])

Abstract

In this paper we consider ‘slowly’ oscillating perturbations of almost periodic Duffing-like systems, i.e. systems of the form ü = u − (a(t) + α(wt))W′(u), t ∈ ℝ, u ∈ ℝN, where WC2N(ℝN, ℝ) is superquadratic and a and α are positive and almost periodic. By variational methods, we prove that if w > 0 is small enough, then the system admits a multibump dynamics. As a consequence we get that the system ü = ua(t)W′(u), t ∈ ℝ, u ∈ ℝN, admits multibump solutions whenever a belongs to an open dense subset of the set of positive almost periodic continuous functions.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Alessio, F.. Slowly oscillating potentials and multibump dynamics for a class of Lagrangian systems. PhD thesis, Politecnico di Torino.Google Scholar
2Alessio, F. and Montecchiari, P.. Multibump solutions for a class of Lagrangian systems slowly oscillating at infinity. Ann. Inst. H. Poincaré Analyse Non Linéaire 16 (1999), 107135.CrossRefGoogle Scholar
3Ambrosetti, A. and Badiale, M.. Homoclinics: Poincaré–Melnikov type results via a variational approach. C. R. Acad. Sci. Paris I 323 (1996), 753758.Google Scholar
4Ambrosetti, A. and Badiale, M.. Ann. Inst. H. Poincaré Analyse Non Linéaire 15 (1998), 233252.CrossRefGoogle Scholar
5Ambrosetti, A.. Badiale, M. and Cingolani, S.. Semiclassical states of nonlinear Schrödinger equation. Arch. Ration. Mech. Analysis 140 (1997), 285300.CrossRefGoogle Scholar
6Angenent, S.. A variational interpretation of Melnikov's function and exponentially small separatrix splitting. Lecture Notes of the London Mathematical Society: Symplectic geometry (ed. Salamon, D.).Google Scholar
7Benci, V. and Giannoni, F.. Homoclinic orbits on compact manifolds. J. Math. Analyt. Applic. 157 (1991), 568576.CrossRefGoogle Scholar
8Berger, M. S.. Nonlinearity and functional analysis. Lectures on Nonlinear Problems in Mathematical Analysis (Academic Press, 1977).Google Scholar
9Besicovitch, A. S.. Almost periodic functions (Dover, 1954).Google Scholar
10Bessi, U.. A variational proof of a Sitnikov-like theorem. Nonlinear Analysis TMA 20 (1993), 13031318.CrossRefGoogle Scholar
11Bessi, U.. Global homoclinic bifurcation for damped systems. Math. Z. 218 (1995), 387415.CrossRefGoogle Scholar
12Bessi, U.. Homoclinic and period-doubling bifurcations for damped systems. Ann. Inst. H. Poincaré Analyse Non Linéaire 12 (1995), 125.CrossRefGoogle Scholar
13Berti, M. and Bolle, P.. Homoclinics and chaotic behaviour for perturbed second order systems. Ann. Mat. Pura Appl. CLXXVI (1999), 323378.CrossRefGoogle Scholar
14Bertotti, M. L. and Bolotin, S.. A variational approach for homoclinics in almost periodic Hamiltonian systems. Commun. Appl. Nonlinear Analysis 2 (1995), 4357.Google Scholar
15Bolotin, S.. Existence of homoclinic motions. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 6 (1980), 98103.Google Scholar
16Buffoni, B. and Séré, E.. A global condition for quasi random behaviour in a class of conservative systems. Commun. Pure Appl. Math. 49 (1996), 285305.3.0.CO;2-9>CrossRefGoogle Scholar
17Caldiroli, P. and Montecchiari, P.. Homoclinics orbits for second order Hamiltonian systems with potential changing sign. Commun. Appl. Nonlinear Analysis 1 (1994), 97129.Google Scholar
18Cieliebak, K. and Séré, E.. Pseudo-holomorphic curves and the shadowing lemma. Duke Math. J. 77 (1995), 483518.Google Scholar
19Zelaii, V. Coti. Ekeland, I. and Séré, E.. A variational approach to homoclinic orbits in Hamiltonian systems. Math. Ann. 288 (1990), 133160.CrossRefGoogle Scholar
20Zelati, V. Coti, Montecchiari, P. and Nolasco, M.. Multibump homoclinic solutions for a class of second order, almost periodic Hamiltonian systems. Nonlinear Diff. Eqns Appl. 4 (1997), 7799.CrossRefGoogle Scholar
21Zelati, V. Coti and Rabinowitz, P. H.. Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Am. Math. Soc. 4 (1991), 693727.CrossRefGoogle Scholar
22Pino, M. Del and Felmer, P. L.. Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Analyse Non Linéaire (In the press.)Google Scholar
23Gui, C.. Existence of multi-bump solutions for nonlinear Schrödinger equations via variational methods. Commun. PDE 21 (1996), 787820.CrossRefGoogle Scholar
24Hofer, H. and Wysocki, K.. First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems. Math. Ann. 288 (1990), 483503.CrossRefGoogle Scholar
25Li, Y. Y.. On a singularly perturbed elliptic equation. Adv. Diff. Eqns 2 (1997), 955980.Google Scholar
26Melnikov, V. K.. On the stability of the center for periodic perturbations. Trans. Moskov Math. Soc. 12 (1963), 157.Google Scholar
27Meyer, K. R. and Sell, G. R.. Melnikov trasforms, Bernoulli bundles, and almost periodic perturbations. Trans. Am. Math. Soc. 314 (1989), 63105.Google Scholar
28Montecchiari, P. and Nolasco, M.. Multibump solutions for perturbations of periodic second order systems. Nonlinear Analysis TMA 27 (1996), 13551372.CrossRefGoogle Scholar
29Montecchiari, P., Nolasco, M. and Terracini, S.. Multiplicity of homoclinics for time recurrent second order systems. Calc. Var. PDEs 5 (1997), 523555.CrossRefGoogle Scholar
30Montecchiari, P., Nolasco, M. and Terracini, S.. A global condition for periodic Duffing-like equations. Trans. Am. Math. Soc. (In the press.)Google Scholar
31Palis, J. and Melo, W. de. Geometric theory of dynamical systems: an introduction (Springer, 1982).CrossRefGoogle Scholar
32Palmer, K. J.. Exponential dycotomies and transversal homoclinic points. J. Diff. Eqns 55 (1984), 225256.CrossRefGoogle Scholar
33Rabinowitz, P. H.. Homoclinic orbits for a class of Hamiltonian systems. Proc. R. Soc. Edinb. A 114 (1990), 3338.CrossRefGoogle Scholar
34Rabinowitz, P. H.. Multibump solutions for an almost periodically forced singular Hamiltonian system. Electron. J. Diff. Eqns 12 (1995).Google Scholar
35Rabinowitz, P. H.. A multibump construction in a degenerate setting. Calc. Var. PDEs 5 (1997), 159182.CrossRefGoogle Scholar
36Scheurle, J.. Chaotic solutions of systems with almost periodic forcing. Z. Angew. Math. Phys. 37 (1986), 1226.CrossRefGoogle Scholar
37Séré, E.. Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Z. 209 (1991), 2742.CrossRefGoogle Scholar
38Séré, E.. Looking for the Bernoulli shift. Ann. Inst. H. Poincaré Analyse Non Linéaire 10 (1993), 561590.CrossRefGoogle Scholar
39Serra, E., Tarallo, M. and Terracini, S.. On the existence of homoclinic solutions for almost periodic second order systems. Ann. Inst. H. Poincar é Analyse Non Linéaire 13 (1996), 783812.CrossRefGoogle Scholar
40Spradlin, G.. Multibump solutions to a Hamiltonian system with an almost periodic term. Preprint (1995).Google Scholar
41Tanaka, K.. Homoclinic orbits in a first order superquadratic Hamiltonian system: convergence of subharmonic orbits. J. Diff. Eqns 94 (1991), 315339.CrossRefGoogle Scholar
42Wiggins, S.. Global bifurcation and chaos. Applied Mathematical Sciences, vol. 73 (Springer, 1988).CrossRefGoogle Scholar
43Wiggins, S.. On the detection and dynamical consequences of orbits homoclinic to hyperbolic periodic orbits and normally hyperbolic invariant tori in a class of ordinary differential equations. SIAM J. Appl. Math. 48 (1988), 262285.CrossRefGoogle Scholar
44Wiggins, S. and Holmes, P.. Homoclinic orbits in slowly varying oscillators. SIAM J. Math. Analysis 18 (1987), 612629.CrossRefGoogle Scholar