Published online by Cambridge University Press: 14 November 2011
In this paper, we study the local structure of the secant mapping of a pair of disjoint curves. We show that for generic curves, the secant map and unit secant maps are locally stable. If we allow our curves to coincide, we can define anew unit secant map to be the natural unit tangent map near the diagonal. This is, for a generic curve, a locally stablemap away from the diagonal. Along the diagonal, it is locally stable as a ℤ2 symmetric germ (the ℤ2 symmetry originating with reflection in the diagonal).