Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T02:59:51.232Z Has data issue: false hasContentIssue false

A generalized skein relation for Khovanov homology and a categorification of the θ-invariant

Published online by Cambridge University Press:  05 November 2020

M. Chlouveraki
Affiliation:
Université Paris-Saclay, UVSQ, CNRS, Laboratoire de Mathématiques de Versailles, 45 avenue des Etats-Unis, 78000Versailles, France ([email protected]) http://chlouveraki.perso.math.cnrs.fr/
D. Goundaroulis
Affiliation:
Department of Molecular and Human Genetics, Baylor College of MedicineHoustonTX77030United States ([email protected])
A. Kontogeorgis
Affiliation:
Department of Mathematics, University of Athens, Panepistimioupolis, 15784Athens, Greece ([email protected])
S. Lambropoulou
Affiliation:
School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou campus, 15780Athens, Greece ([email protected]) http://www.math.ntua.gr/~sofia

Abstract

The Jones polynomial is a famous link invariant that can be defined diagrammatically via a skein relation. Khovanov homology is a richer link invariant that categorifies the Jones polynomial. Using spectral sequences, we obtain a skein-type relation satisfied by the Khovanov homology. Thanks to this relation, we are able to generalize the Khovanov homology in order to obtain a categorification of the θ-invariant, which is itself a generalization of the Jones polynomial.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aicardi, F. and Juyumaya, J.. Markov trace on the algebra of braids and ties. Mosc. Math. J. 16 (2016), 397431.CrossRefGoogle Scholar
Aicardi, F. and Juyumaya, J.. Tied links. J. Knot Theory Ramifications 25 (2016), 1641001.CrossRefGoogle Scholar
Bar-Natan, D.. On Khovanov's categorification of the Jones polynomial. Algebr. Geom. Topol. 2 (2002), 337370.CrossRefGoogle Scholar
Bar-Natan, D. Morrison, S. et al. . The Knot Atlas, http://katlas.org.Google Scholar
Chlouveraki, M.. From the Framisation of the Temperley-Lieb algebra to the Jones polynomial: an algebraic approach. Knots, Low-Dimens. Topol. Appl., Springer PROMS 284 (2019), 247276.Google Scholar
Chlouveraki, M., Juyumaya, J., Karvounis, K. and Lambropoulou, S.. Identifying the invariants for classical knots and links from the Yokonuma–Hecke algebras. Int. Math. Res. Not. 2020 (2020), 214286.CrossRefGoogle Scholar
Goundaroulis, D., Juyumaya, J., Kontogeorgis, A. and Lambropoulou, S.. Framization of the Temperley-Lieb algebra. Math. Res. Lett. 24 (2017), 299345.CrossRefGoogle Scholar
Goundaroulis, D. and Lambropoulou, S.. A new two-variable generalization of the Jones polynomial. J. Knot Theory Ramif. 28 (2019), 1940005.CrossRefGoogle Scholar
Kauffman, L. H. and Lambropoulou, S.. New skein invariants of links. J. Knot Theory Ramif. 28 (2019), 1940018.CrossRefGoogle Scholar
Kronheimer, P. B. and Mrowka, T. S.. Khovanov homology is an unknot-detector. Publ. Math. IHES 113 (2011), 97208.CrossRefGoogle Scholar
Khovanov, M.. A categorification of the Jones polynomial. Duke Math. J. 101 (2000), 359426.CrossRefGoogle Scholar
Lickorish, W. B. R. and Millett, K. C.. A polynomial invariant of oriented links. Topology 26 (1987), 107141.CrossRefGoogle Scholar
Terras, A.. Zeta functions of graphs. A stroll through the garden, Cambridge Studies in Advanced Mathematics 128 (Cambridge: Cambridge University Press, 2011).Google Scholar
Turner, P.. Five Lectures on Khovanov Homology. arXiv:math/0606464.Google Scholar
Wehrli, S. M.. Khovanov Homology and Conway Mutation. arXiv:math/0301312.Google Scholar
Weibel, C. A.. An introduction to homological algebra (Cambridge: Cambridge University Press, 1994).CrossRefGoogle Scholar