Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T21:45:16.995Z Has data issue: false hasContentIssue false

The fundamental gap of a kind of sub-elliptic operator

Published online by Cambridge University Press:  03 June 2022

Hongli Sun
Affiliation:
School of Mathematics and Statistics, Central South University, Changsha 410083, China ([email protected]; [email protected])
Donghui Yang
Affiliation:
School of Mathematics and Statistics, Central South University, Changsha 410083, China ([email protected]; [email protected])

Abstract

In this paper the minimum fundamental gap of a kind of sub-elliptic operator is concerned, we deal with the existence and uniqueness of weak solution for that. We verify that the minimization fundamental gap problem can be achieved by some function, and characterize the optimal function by adopting the differential of eigenvalues.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alabau-Boussouira, F., Cannarsa, P. and Fragnelli, G.. Carleman estimates for degenerate parabolic operators with applications to null controllability. J. Evol. Equ. 6 (2006), 161204.CrossRefGoogle Scholar
El Allali, Z. and Harrell, E. M.. Optimal bounds on the fundamental spectral gap with single-well potentials. Proc. Am. Math. Soc. 150 (2022), 575587.CrossRefGoogle Scholar
Andrews, B. and Clutterbuck, J.. Proof of the fundamental gap conjecture. J. Am. Math. Soc. 24 (2011), 899916.CrossRefGoogle Scholar
Ashbaugh, M. S., Harrell, E. M. and Svirsky, R.. On minimal and maximal eigenvalue gaps and their causes. Pacific J. Math. 147 (1991), 124.Google Scholar
Bennewitz, C., Brown, M. and Weikard, R.. Spectral and Scattering Theory for Ordinary Differential Equations (Cham, Switzerland: Springer, 2020).CrossRefGoogle Scholar
Buffe, R. and Phung, K. D.. A spectral inequality for degenerate operators and applications. Compt. Rendus Math. 356 (2018), 11311155.Google Scholar
Caldiroli, P. and Musina, R.. On a variational degenerate elliptic problem. Nonlinear Differ. Eq. Appl. 7 (2000), 187199.Google Scholar
Cavalheiro, A. C.. Weighted Sobolev spaces and degenerate elliptic equations. Boletim da Sociedade Paranaense de Matemática 26 (2008), 117132.CrossRefGoogle Scholar
Chabrowski, J.. Degenerate elliptic equation involving a subcritical Sobolev exponent. Portugaliae Math. 53 (1996), 167178.Google Scholar
Chen, D. Y. and Huang, M. J.. Comparison theorems for the eigenvalue gap of Schrödinger operators on the real line. Annales Henri Poincaré 13 (2012), 85101.CrossRefGoogle Scholar
Chen, H. and Luo, P.. Lower bounds of Dirichlet eigenvalues for some degenerate elliptic operators. Calc. Var. Partial. Differ. Equ. 54 (2015), 28312852.CrossRefGoogle Scholar
Chern, H. H. and Shen, C. L.. On the maximum and minimum of some functionals for the eigenvalue problem of Sturm-Liouville type. J. Differ. Equ. 107 (1994), 6879.CrossRefGoogle Scholar
Evans, L. C., Partial Differential Equations: Second Edition, 2nd ed. Graduate Studies in Mathematics. (American Mathematical Society, 2010).Google Scholar
Gilbarg, D. and Trudinger, N. S.. Elliptic partial differential equations of second order (Berlin, Heidelberg: Springer, 2001).Google Scholar
Henrot, A., Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics (Birkhäuser Basel, 2006).CrossRefGoogle Scholar
Horváth, M.. On the first two eigenvalues of Sturm-Liouville operators. Proc. Am. Math. Soc. 131 (2003), 12151224.CrossRefGoogle Scholar
Huang, M. J. and Tsai, T. M.. The eigenvalue gap for one-dimensional Schrödinger operators with symmetric potentials. Proc. R. Soc. Edinburgh 139 (2009), 359366.CrossRefGoogle Scholar
Hyun, J. S.. A comparison theorem of the eigenvalue gap for one-dimensional barrier potentials. Bull. Korean Math. Soc. 37 (2000), 353360.Google Scholar
Karaa, S.. Extremal eigenvalue gaps for the Schrödinger operator with Dirichlet boundary conditions. J. Math. Phys. 39 (1998), 23252332.Google Scholar
Kerner, J., A lower bound on the spectral gap of one-dimensional Schrödinger operators. preprint arXiv:2102.03816, 2021.Google Scholar
Kerner, J., A lower bound on the spectral gap of Schrödinger operators with weak potentials of compact support. preprint arXiv:2103.03813, 2021.Google Scholar
Kikonko, M. and Mingarelli, A. B.. Estimates on the lower bound of the eigenvalue of the smallest modulus associated with a general weighted Sturm-Liouville problem. Int. J. Differ. Eq. 2016 (2016), 15.Google Scholar
Lavine, R.. The eigenvalue gap for one-dimensional convex potentials. Proc. Am. Math. Soc. 121 (1994), 815821.CrossRefGoogle Scholar
Lucia, M. and Schuricht, F.. A class of degenerate elliptic eigenvalue problems. Adv. Nonlinear Anal. 2 (2013), 91125.Google Scholar
Monticelli, D. D. and Payne, K. R.. Maximum principles for weak solutions of degenerate elliptic equations with a uniformly elliptic direction. J. Differ. Equ. 247 (2009), 19932026.CrossRefGoogle Scholar
Morimoto, Y. and Xu, C. J.. Logarithmic Sobolev inequality and semi-linear Dirichlet problems for infinitely degenerate elliptic operators. Astérisque 284 (2003), 245264.Google Scholar
Moyano, I.. Flatness for a strongly degenerate 1-D parabolic equation. Math. Control, Signals, Syst. 28 (2016), 122.CrossRefGoogle Scholar
Rodney, S.. Existence of weak solutions of linear subelliptic Dirichlet problems with rough coefficients. Canad. J. Math. 64 (2012), 13951414.CrossRefGoogle Scholar
Sawyer, E. T. and Wheeden, R. L.. Holder continuity of weak solutions to subelliptic equations with rough coefficients (Charles ST, Providence: Memoirs of the American Mathematical Society, 2006).CrossRefGoogle Scholar
Sawyer, E. T. and Wheeden, R. L.. Degenerate sobolev spaces and regularity of subelliptic equations. Trans. Am. Math. Soc. 362 (2010), 18691906.CrossRefGoogle Scholar
Stuart, C. A.. Bifurcation at isolated singular points for a degenerate elliptic eigenvalue problem. Nonlinear Anal. 119 (2015), 209221.CrossRefGoogle Scholar
Stuart, C. A.. A critically degenerate elliptic Dirichlet problem, spectral theory and bifurcation. Nonlinear Anal. 190 (2020), 111620.CrossRefGoogle Scholar
V. Egorov, Y. and Kondratiev, V. A.. On spectral theory of elliptic operators. 89 (Basel, Switzerland: Birkhäuser, 2012).Google Scholar
Weber, B.. Regularity and a Liouville theorem for a class of boundary-degenerate second order equations. J. Differ. Equ. 281 (2021), 459502.CrossRefGoogle Scholar
Xu, C. J.. Subelliptic variational problems. Bulletin de la Société Mathématique de France 118 (1990), 147169.CrossRefGoogle Scholar
Yu, X. J. and Yang, C. F.. The gap between the first two eigenvalues of Schrödinger operators with single-well potential. Appl. Math. Comput. 268 (2015), 275283.Google Scholar