Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T23:19:40.747Z Has data issue: false hasContentIssue false

A functional-analytic framework for the study of elliptic equations on variable domains

Published online by Cambridge University Press:  14 November 2011

José M. Vegas
Affiliation:
Departmento de Mateḿtica Aplicada, Facultad de Mateḿticas, Universidad Complutense, 28040-Madrid, Spain

Synopsis

Given a decreasing sequence of domains Ωn converging in measure to some domain Ω0, a sequence of subspaces V of a Hilbert space V is constructed in such a way that the convergence of the solutions of u −Δu = f on Ωn with Neumann Boundary Condition is given in terms of the convergence of the orthogonal projections Pn on Vn. Under dissipative assumptions, we can obtain continuation results for equations like u −Δu = f(x,uu).

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Amann, H.. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18 (1976), 621709.CrossRefGoogle Scholar
2Anselone, P. M.. Collectively Compact Operator Approximation Theory and Applications to Integral equations (New York: Prentice-Hall, 1971).Google Scholar
3Aubin, J. P.. Approximation des espaces de distributions et des opérateurs différentiels. Bull. Soc. Math. France, Mém. 12 (1967).Google Scholar
4Babuška, I. and Vyborny, R.. Continuous dependence of eigenvalues on the domain. Czechoslovak Math. J. 15 (1965), 169178.CrossRefGoogle Scholar
5Courant, R. and Hilbert, D.. Methods of Mathematical Physics. (New York: Interscience, 1962).Google Scholar
6Dancer, E. N.. The effect of domain shape on the number of positive solutions of certain nonlinear equations, I, II. J. Differential Equations 74 (1988), 120156; and to appear.CrossRefGoogle Scholar
7Dancer, E. N.. On the indices of fixed points of mappings in cones and applications. J. Math. Anal. Appl. 91 (1983), 131151.CrossRefGoogle Scholar
8Garabedian, P. R. and Schiffer, M.. Convexity of domain functionals. J. Analyse Math. 2 (1952/1953), 281368.CrossRefGoogle Scholar
9Grigorieff, R. D.. Diskret Kompakte Einbettungen in Sobolewschen Räumen. Math. Ann. 197 (1972), 7185.CrossRefGoogle Scholar
10Hadamard, J.. Memoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées (1907). Oeuvres de J. Hadamard, vol. 2 (Paris: Editions du CNRS, 1968).Google Scholar
11Hale, J. K.. Asymptotic Behavior of Dissipative Systems. Mathematical Surveys 25 (Providence, R.I.: American Mathematical Society, 1988).Google Scholar
12Hale, J. K. and Vegas, J. M.. A nonlinear parabolic equation with varying domain. Arch. Rational. Mech. Anal. 86 (1984), 99123.CrossRefGoogle Scholar
13Henry, D.. Generic Properties od equilibrium solutions by perturbation of the boundary. In Dynamics of Infinite Dimensional Systems, eds Chow and Hale. NATO ASI Series F 37, 129139 (Berlin: Springer, 1987).CrossRefGoogle Scholar
14Jimbo, H.. Singular perturbation of domains and semilinear elliptic equations. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 (1988), 2776.Google Scholar
15Kohn, R. V. and Sternberg, J.. Local minimizers and singular perturbations. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 6984.CrossRefGoogle Scholar
16Krasnosel'skii, M. A. and Zabreiko, P. P.. Geometrical Methods of Nonlinear Analysis. Grundlehren der mathematische Wissenschaften 263 (Berlin: Springer, 1984).CrossRefGoogle Scholar
17Hidalgo, M. Lobo and Palencia, E. Sánchez. Sur certaines propriétés spectrales des perturbations du domaine dans les problèmes aux limites. Comm. Partial Differential Equations 4 (1979), 10851098.CrossRefGoogle Scholar
18Matano, H.. Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. Res. Inst. Math. Sci. 15 (1979), 401454.CrossRefGoogle Scholar
19Matano, H. and Mimura, M.. Pattern formation in competition-diffusion systems in nonconvex domains. Publ. Res. Inst. Math. Sci. 19 (1983), 10491079.CrossRefGoogle Scholar
20Mignot, F., Murat, F. and Puel, J. P.. Variation d'un point de retournement par rapport au domaine. Comm. Partial Differential Equations 4 (1979), 12361297.CrossRefGoogle Scholar
21Micheletti, A. M.. Perturbazione dello spettro di un operatore ellittico di tipo variazionale, in relazione ad una variazione del campo. Ann. Mat. Pura Appl. XCVII (1973), 261281.Google Scholar
22Nečas, J.. Les méthodes directes en théorie des équations elliptiques (Prague: Academia, 1967).Google Scholar
23Pironneau, O.. Optimal Shape Design for Elliptic Systems, Springer Series in Computational Physics (Berlin: Springer, 1983).Google Scholar
24Rauch, J. and Taylor, M.. Potential ans scattering theory on wildly perturbed domains. J. Fund. Anal. 18 (1975), 2759.CrossRefGoogle Scholar
25Sánchez-Palencia, E.. Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics 127 (Berlin: Springer, 1980).Google Scholar
26Saut, J. C. and Temam, R.. Generic Properties of nonlinear boundary value problems. Comm. Partial Differential Equations 4 (1979), 293319.CrossRefGoogle Scholar
27Simon, J.. Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Appl. 2 (1981).Google Scholar
28Stummel, F.. Perturbation theory for Sobolev spaces. Proc. Roy. Soc. Edinburgh Sect. A 74 (1974/1975), 549.Google Scholar
29Stummel, F.. Perturbation of domains in elliptic boundary value problems. Lecture Notes in Mathematics 503, (Berlin: Springer, 1976).Google Scholar
30Vegas, J. M.. Bifurcation caused by perturbing the domain in an elliptic equation. J. Differential Equations 48 (1983), 189226.CrossRefGoogle Scholar
31Vegas, J. M.. Irregular variations of the domain in elliptic problems with Neumann boundary conditions. In Contributions to Nonlinear P.D.E. II, eds Díaz, and Lions, , Pitman Research Notes in Mathematics 155, 276287 (London: Pitman, 1987).Google Scholar
32Vegas, J. M.. On some dynamical aspects of parabolic equations with variable domain. In Dynamics of Infinite Dimensional Systems, eds Hale, Chow and, NATO ASI Series F 37, 451458 (Berlin: Springer, 1987).CrossRefGoogle Scholar
33Vegas, J. M.. Dynamic properties of semilinear parabolic equations which are preserved under domain variation (in prep.).Google Scholar
34Zolésio, J. P.. Identification de domaine par déformation (Thèse d'état, Université de Nice, 1979).Google Scholar