No CrossRef data available.
Published online by Cambridge University Press: 14 November 2011
The best constants in Landau's inequality for the difference operator in the classical sequence spaces lp are known explicitly only for p = 1, 2, ∞. This is true in both the infinite N = (0, 1, 2, …) and biinfinite Z= (… − 1, 0, 1, …) cases. It is known that there are no extremals when p = 2 in both the infinite and biinfinite cases. Also, it is known that there are extremals when p = ∞ in the biinfinite case. Here we prove that there are no extremals in the other three cases where the best constants are known explicitly. The proofs for these three cases are quite different from each other.