Published online by Cambridge University Press: 14 November 2011
Let F be a real analytic function on a real analytic manifold X. Let P be a linear differential operator on X such that , where Q is an ordinary differential operator with analytic coefficients whose singular points are all regular. For each (isolated) critical value z of F, we construct locally an F-invariant solution u of the equation Pu - v, v being an arbitrary F-invariant distribution supported in F−1(z). The solution u is constructed explicitly in the form of a series of F-invariant distributions.