Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Andreianov, B.
and
Igbida, N.
2006.
Revising uniqueness for a nonlinear diffusion–convection equation.
Journal of Differential Equations,
Vol. 227,
Issue. 1,
p.
69.
Andreu, F.
Igbida, N.
Mazón, J. M.
and
Toledo, J.
2006.
Free Boundary Problems.
Vol. 154,
Issue. ,
p.
11.
Liu, Qiang
and
Wang, Chunpeng
2007.
Uniqueness of the bounded solution to a strongly degenerate parabolic problem.
Nonlinear Analysis: Theory, Methods & Applications,
Vol. 67,
Issue. 11,
p.
2993.
Ammar, Kaouther
2007.
Renormalized solutions of degenerate elliptic problems.
Journal of Differential Equations,
Vol. 234,
Issue. 1,
p.
1.
Sbihi, Karima
and
Wittbold, Petra
2007.
Existence de solutions renormalisées pour un problème de Stefan non linéaire.
Comptes Rendus. Mathématique,
Vol. 345,
Issue. 11,
p.
629.
Ammar, Kaouther
2008.
On nonlinear diffusion problems with strong degeneracy.
Journal of Differential Equations,
Vol. 244,
Issue. 8,
p.
1841.
Wang, Chunpeng
Wang, Zejia
and
Liu, Qiang
2008.
Existence of weak solutions for a class of nonlinear diffusion problems.
Mathematical and Computer Modelling,
Vol. 47,
Issue. 9-10,
p.
874.
Andreu, F.
Igbida, N.
Mazón, J.M.
and
Toledo, J.
2008.
Renormalized solutions for degenerate elliptic–parabolic problems with nonlinear dynamical boundary conditions andL1-data.
Journal of Differential Equations,
Vol. 244,
Issue. 11,
p.
2764.
Andreianov, B.
Bendahmane, M.
Karlsen, K.H.
and
Ouaro, S.
2009.
Well-posedness results for triply nonlinear degenerate parabolic equations.
Journal of Differential Equations,
Vol. 247,
Issue. 1,
p.
277.
Liqin, Zhang
and
Junning, Zhao
2009.
Existence and uniqueness of renormalized solutions for a class of degenerate parabolic equations.
Acta Mathematica Scientia,
Vol. 29,
Issue. 2,
p.
251.
Laurençot, Philippe
and
Walker, Christoph
2009.
Proteus mirabilis swarm-colony development with drift.
Journal de Mathématiques Pures et Appliquées,
Vol. 92,
Issue. 5,
p.
476.
Maliki, Mohamed
and
Ouedraogo, Adama
2010.
Renormalized solution for nonlinear degenerate problems in the whole space.
Annales de la Faculté des sciences de Toulouse : Mathématiques,
Vol. 17,
Issue. 3,
p.
597.
ANDREIANOV, B.
BENDAHMANE, M.
and
KARLSEN, K. H.
2010.
DISCRETE DUALITY FINITE VOLUME SCHEMES FOR DOUBLY NONLINEAR DEGENERATE HYPERBOLIC-PARABOLIC EQUATIONS.
Journal of Hyperbolic Differential Equations,
Vol. 07,
Issue. 01,
p.
1.
Wittbold, P.
and
Zimmermann, A.
2010.
Existence and uniqueness of renormalized solutions to nonlinear elliptic equations with variable exponents and -data.
Nonlinear Analysis: Theory, Methods & Applications,
Vol. 72,
Issue. 6,
p.
2990.
Igbida, Noureddine
Sbihi, Karima
and
Wittbold, Petra
2010.
Renormalized solution for Stefan type problems: existence and uniqueness.
Nonlinear Differential Equations and Applications NoDEA,
Vol. 17,
Issue. 1,
p.
69.
Andreianov, Boris
Karlsen, Kenneth Hvistendahl
and
Risebro, Nils Henrik
2011.
A Theory of L 1-Dissipative Solvers for Scalar Conservation Laws with Discontinuous Flux.
Archive for Rational Mechanics and Analysis,
Vol. 201,
Issue. 1,
p.
27.
Gwiazda, Piotr
Wittbold, Petra
Wróblewska, Aneta
and
Zimmermann, Aleksandra
2012.
Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces.
Journal of Differential Equations,
Vol. 253,
Issue. 2,
p.
635.
Andreianov, Boris
and
Wittbold, Petra
2012.
Convergence of approximate solutions to an elliptic–parabolic equation without the structure condition.
Nonlinear Differential Equations and Applications NoDEA,
Vol. 19,
Issue. 6,
p.
695.
Blanchard, Dominique
Petitta, Francesco
and
Redwane, Hicham
2013.
Renormalized solutions of nonlinear parabolic equations with diffuse measure data.
Manuscripta Mathematica,
Vol. 141,
Issue. 3-4,
p.
601.
Gwiazda, P.
Wittbold, P.
Wróblewska-Kamińska, A.
and
Zimmermann, A.
2015.
Renormalized solutions to nonlinear parabolic problems in generalized Musielak–Orlicz spaces.
Nonlinear Analysis: Theory, Methods & Applications,
Vol. 129,
Issue. ,
p.
1.