Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T01:54:59.494Z Has data issue: false hasContentIssue false

The existence of infinitely many bifurcating branches

Published online by Cambridge University Press:  14 November 2011

Hans-Jörg Ruppen
Affiliation:
Niedergampelstrasse, 3945 Gampel, Switzerland

Synopsis

We consider the non-linear problem −Δu(x)−f(x, u(x)) = λu(x) for x ∈ℝN and uW1,2(ℝN). We show that, under suitable conditions on f, there exist infinitely many branches all bifurcating from the lowest point of the continuous spectrum λ = 0. The method used in the proof is based on a theorem of Ljusternik-Schnirelman type for the free case.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ambrosetti, A. and Rabinowitz, P. H.. Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973), 359381.CrossRefGoogle Scholar
2Berestycki, H. and Lions, P.-L.. Nonlinear scalar field equations I (Existence of a ground state) and II (Existence of infinitely many solutions). Univ. Paris VI preprints. Arch. Rational Mech. Anal, to appear.Google Scholar
3Rabinowitz, P. H.. Variational methods for nonlinear eigenvalue problems, C.I.M.E., ed. G., Prodi (Rome: Ed. Cremonese, 1974).Google Scholar
4Stuart, C. A.. Bifurcation from the continuous spectrum in the L2-theory of elliptic equations on RN. Recent Methods in Nonlinear Analysis and Applications, Lignori, Napoli (1981) (copies available from the author).Google Scholar
5Stuart, C. A.. Bifurcation from the essential spectrum. Proceedings of Equadiff 82. Lecture Notes in Mathematics 1017 (Berlin: Springer, 1983).Google Scholar
6Zeidler, E.. Vorlesungen über nichtlineare Funktionalanalysis III—Variationsmethoden und Optimierung (Teubner Texte zur Mathematik) (Leipzig: Teubner, 1977).Google Scholar
7Ruppen, H.-J.. Le Probleme de Dirichlet: Existence d'un nombre inflni de branches de bifurcation pour N ≧ 2; existence et nonexistence de solutions pour N = 1 (Thesis, EPF Lausanne, to appear).Google Scholar