Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Bates, Larry M.
1991.
Monodromy in the champagne bottle.
ZAMP Zeitschrift f�r angewandte Mathematik und Physik,
Vol. 42,
Issue. 6,
p.
837.
Fass�, Francesco
1995.
Hamiltonian perturbation theory on a manifold.
Celestial Mechanics & Dynamical Astronomy,
Vol. 62,
Issue. 1,
p.
43.
Fass�, Francesco
1996.
The Euler-Poinsot top: A non-commutatively integrable system without global action-angle coordinates.
ZAMP Zeitschrift f�r angewandte Mathematik und Physik,
Vol. 47,
Issue. 6,
p.
953.
Fiorani, E.
Giachetta, G.
and
Sardanashvily, G.
2002.
Geometric quantization of time-dependent completely integrable Hamiltonian systems.
Journal of Mathematical Physics,
Vol. 43,
Issue. 10,
p.
5013.
Giachetta, G.
Mangiarotti, L.
and
Sardanashvily, G.
2002.
Geometric quantization of completely integrable Hamiltonian systems in the action-angle variables.
Physics Letters A,
Vol. 301,
Issue. 1-2,
p.
53.
Fassò, Francesco
2005.
Superintegrable Hamiltonian Systems: Geometry and Perturbations.
Acta Applicandae Mathematicae,
Vol. 87,
Issue. 1-3,
p.
93.
Sadovskií, D. A.
and
Zhilinskií, B. I.
2006.
Quantum monodromy and its generalizations and molecular manifestations.
Molecular Physics,
Vol. 104,
Issue. 16-17,
p.
2595.
Sepe, Daniele
2010.
Topological classification of Lagrangian fibrations.
Journal of Geometry and Physics,
Vol. 60,
Issue. 2,
p.
341.
Zhilinskii, Boris
2010.
Quantum monodromy and pattern formation.
Journal of Physics A: Mathematical and Theoretical,
Vol. 43,
Issue. 43,
p.
434033.
Sepe, Daniele
2013.
Universal Lagrangian bundles.
Geometriae Dedicata,
Vol. 165,
Issue. 1,
p.
53.
Avendaño-Camacho, M.
Vallejo, J. A.
and
Vorobiev, Yu.
2017.
A perturbation theory approach to the stability of the Pais-Uhlenbeck oscillator.
Journal of Mathematical Physics,
Vol. 58,
Issue. 9,
Bolsinov, Alexey
Matveev, Vladimir S.
Miranda, Eva
and
Tabachnikov, Serge
2018.
Open problems, questions and challenges in finite- dimensional integrable systems.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
Vol. 376,
Issue. 2131,
p.
20170430.
Fassò, Francesco
2022.
Perturbation Theory.
p.
307.
Fassò, Francesco
2022.
Encyclopedia of Complexity and Systems Science.
p.
1.