Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T21:25:00.526Z Has data issue: false hasContentIssue false

Ergodic properties and Weyl M-functions for random linear Hamiltonian systems

Published online by Cambridge University Press:  11 July 2007

R. Johnson
Affiliation:
Dipartimento di Sistemi e Informatica, Università di Firenze, Firenze, Italy 50139 ([email protected])
S. Novo
Affiliation:
Departamento de Matemática Aplicada a la Ingeniería, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, 47011 Valladolid, Spain ([email protected])
R. Obaya
Affiliation:
Departamento de Matemática Aplicada a la Ingeniería, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, 47011 Valladolid, Spain ([email protected])

Abstract

This paper provides a topological and ergodic analysis of random linear Hamiltonian systems. We consider a class of Hamiltonian equations presenting absolutely continuous dynamics and prove the existence of the radial limits of the Weyl M-functions in the L1-topology. The proof is based on previous ergodic relations obtained for the Floquet coefficient. The second part of the paper is devoted to the qualitative description of disconjugate linear Hamiltonian equations. We show that the principal solutions at ±∞ define singular ergodic measures, and determine an invariant region in the Lagrange bundle which concentrates the essential dynamical information. We apply this theory to the study of the n-dimensional Schrödinger equation at the first point of the spectrum.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)