Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T16:55:45.333Z Has data issue: false hasContentIssue false

Equivalent norms and Schauder bases in anisotropic Besov spaces

Published online by Cambridge University Press:  14 November 2011

Tran Due Long
Affiliation:
Sektion Mathematik, Universität Jena, DDR-69 Jena
Hans Triebel
Affiliation:
Sektion Mathematik, Universität Jena, DDR-69 Jena

Synopsis

The paper deals with equivalent norms and Schauder bases in anisotropic Besov spaces where 1≦p <∞, = (s1,…, sn), and 0 < sk <1.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Besov, O. V., II'in, V. P. and Nikol'skij, S. M.. Integral Representations of Functions and Imbedding Theorems (Moscow: Nauka, 1975) (Russian).Google Scholar
2Nikol'skij, S. M.. Approximation of Functions of Several Variables and Imbedding Theorems (Berlin: Springer, 1975) (New improved Russian edition: Moscow 1977).CrossRefGoogle Scholar
3Ropela, S.. Spline bases in Besov spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 319325.Google Scholar
4Schmeiβer, H.-J.. Anisotropic spaces. II. (Equivalent norms for abstract spaces, function spaces with weights of Sobolev-Besov type). Math. Nachr. 79 (1977), 5573.CrossRefGoogle Scholar
5SchmeiBer, H.-J. and Triebel, H.. Anisotropic spaces. I. (Interpolation of abstract spaces and function spaces). Math. Nachr. 73 (1976), 107123.CrossRefGoogle Scholar
6Triebel, H.. Interpolation Theory, Function Spaces, Differential Operators (Amsterdam: North Holland, 1978).Google Scholar
7Triebel, H.. Spaces of Besov–Hardy–Sobolev Type. Teubner-Texte Math. (Leipzig: Teubner, 1978).Google Scholar
8Triebel, H.. On Haar bases in Besov spaces. Serdica, to appear.Google Scholar