No CrossRef data available.
Published online by Cambridge University Press: 22 January 2021
We work in the smooth category. Let $N$ be a closed connected orientable 4-manifold with torsion free $H_1$, where $H_q := H_q(N; {\mathbb Z} )$. Our main result is a readily calculable classification of embeddings$N \to {\mathbb R}^7$up to isotopy, with an indeterminacy. Such a classification was only known before for $H_1=0$ by our earlier work from 2008. Our classification is complete when $H_2=0$ or when the signature of $N$ is divisible neither by 64 nor by 9.
The group of knots $S^4\to {\mathbb R}^7$ acts on the set of embeddings $N\to {\mathbb R}^7$ up to isotopy by embedded connected sum. In Part I we classified the quotient of this action. The main novelty of this paper is the description of this action for $H_1 \ne 0$, with an indeterminacy.
Besides the invariants of Part I, detecting the action of knots involves a refinement of the Kreck invariant from our work of 2008.
For $N=S^1\times S^3$ we give a geometrically defined 1–1 correspondence between the set of isotopy classes of embeddings and a certain explicitly defined quotient of the set ${\mathbb Z} \oplus {\mathbb Z} \oplus {\mathbb Z} _{12}$.