Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T18:38:03.308Z Has data issue: false hasContentIssue false

The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent

Published online by Cambridge University Press:  14 November 2011

Guy Bouchitté
Affiliation:
Département de Mathématiques, Université de Toulon et du Var—BP 132, 83957 La Garde Cedex, France
Irene Fonseca
Affiliation:
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.
Jan Malý
Affiliation:
Faculty of Mathematics and Physics—KMA, Charles University, Sokolovská 83, 18600 Praha 8, Czech Republic

Abstract

The characterisation of the bulk energy density of the relaxation in W1, P(Ω; ℝd) of a functional

is obtained for p > qq/N, where uW1, P(Ω; ℝd), and f is a continuous function on the set of d × N matrices verifying

for some constant C > 0 and 1 ≦ q < + ∞. Typical examples may be found in cavitation and related theories. Standard techniques cannot be used due to the gap between the exponent q of the growth condition and the exponent p of the integrability of the macroscopic strain ∇u. A recently introduced global method for relaxation and fine Sobolev trace and extension theorems are applied.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Acerbi, E. and Maso, G. Dal. New lower semicontinuity results for polyconvex integrals case. Calc. Var. 2 (1994), 329–72.CrossRefGoogle Scholar
2Acerbi, E. and Fusco, F.. Semicontinuity problems in the Calculus of Variations. Arch. Rational Mech. Anal. 86 (1984), 125–45.CrossRefGoogle Scholar
3Ball, J. M.. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977), 337403.Google Scholar
4Ball, J. M. and Murat, F.. W1, P quasiconvexity and variational problemsfor multiple integrals. J. Fund. Anal. 58 (1984), 225–53.CrossRefGoogle Scholar
5Bouchitté, G., Fonseca, I. and Mascarenhas, L.. A global method for relaxation. Arch. Rational Mech. Anal, (to appear).Google Scholar
6Carbone, L. and Arcangelis, R. De. Further results on Γ-convergence and lower semicontinuity of integral functionals depending on vector-valued functions. Ricerche Mat. 39 (1990), 99129.Google Scholar
7Celada, P. and Maso, G. Dal. Further remarks on the lower semicontinuity of polyconvex integrals. Ann. Inst. H. Poincaré, Anal. Non Linéaire 11 (1994), 661–91.CrossRefGoogle Scholar
8Dacorogna, B.. Direct Methods in the Calculus of Variations, Applied Mathematical Sciences 78 (Berlin: Springer, 1989).CrossRefGoogle Scholar
9Dacorogna, B. and Marcellini, P.. Semicontinuité pour des intégrandes polyconvexes sans continuité des determinants. C. R. Acad. Sci. Paris Sér. I Math. 311(6), (1990), 393–6.Google Scholar
10Maso, G. Dal and Sbordone, G.. Weak lower semicontinuity of polyconvex integrals: a borderline case. Math. Z. 218 (1995), 603–9.CrossRefGoogle Scholar
11Federer, H.. Geometric Measure Theory, 2nd edn (Berlin: Springer, 1996).CrossRefGoogle Scholar
12Fonseca, I. and Maly, J.. Relaxation of multiple integrals below the growth exponent. Ann. Inst. H. Poincaré, Anal. Non Linéaire 14 (1997), 309–38.CrossRefGoogle Scholar
13Fonseca, I. and Marcellini, P.. Relaxation of multiple integrals in subcritical Sobolev spaces. J. Geom. Anal, (to appear).Google Scholar
14Fusco, N. and Hutchinson, J. E.. A direct proof for lower semicontinuity of polyconvex functionals. Manuscripta Math. 85 (1995), 3550.Google Scholar
15Gangbo, W.. On the weak lower semicontinuity of energies with polyconvex integrands. J. Math. Pures Appl. 73 (1994), 455–69.Google Scholar
16Hajlasz, P.. A note on weak approximation of minors. Ann. Inst. H. Poincare, Anal. Non Lineaire 12 (1995), 415–24.CrossRefGoogle Scholar
17Malý, J.. Weak lower semicontinuity of polyconvex integrals. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 681–91.CrossRefGoogle Scholar
18Malý, J.. Weak lower semicontinuity of polyconvex and quasiconvex integrals. Preprint, 1993.Google Scholar
19Malý, J.. Lower semicontinuity of quasiconvex integrals. Manuscripta Math. 85 (1994), 419–28.CrossRefGoogle Scholar
20Marcellini, P.. Approximation of quasiconvex functions and lower semicontinuity of multiple integrals quasiconvex integrals. Manuscripta Math. 51 (1985), 128.Google Scholar
21Marcellini, P.. On the definition and the lower semicontinuity of certain quasiconvex integrals. Ann. Inst. H. Poincaré, Anal. Non Linéaire 3 (1986), 391409.Google Scholar
22Morrey, C. B.. Multiple integrals in the Calculus of Variations (Berlin: Springer, 1966).CrossRefGoogle Scholar
23Stein, E. M.. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals (Princeton, NJ: Princeton University Press, 1993).Google Scholar