Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T10:57:27.717Z Has data issue: false hasContentIssue false

The effect of impurities on striped phases

Published online by Cambridge University Press:  20 August 2018

Gabriela Jaramillo
Affiliation:
Department of Mathematics, The University of Arizona, 617 N. Santa Rita Avenue, Tucson, AZ 85721, USA
Arnd Scheel
Affiliation:
School of Mathematics, University of Minnesota, 206 Church Street S.E., Minneapolis, MN 55455, USA
Qiliang Wu
Affiliation:
Department of Mathematics, Michigan State University, 619 Red Cedar Road, East Lansing, MI 48824, USA

Abstract

We study the effect of algebraically localized impurities on striped phases in one spatial dimension. We therefore develop a functional-analytic framework that allows us to cast the perturbation problem as a regular Fredholm problem despite the presence of the essential spectrum, caused by the soft translational mode. Our results establish the selection of jumps in wavenumber and phase, depending on the location of the impurity and the average wavenumber in the system. We also show that, for select locations, the jump in the wavenumber vanishes.

MSC classification

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Department of Mathematics, Ohio University Morton Hall 321, 1 Ohio University, Athens, OH 45701, USA ([email protected]).