Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T19:25:50.312Z Has data issue: false hasContentIssue false

Derived homotopy algebras

Published online by Cambridge University Press:  25 July 2022

Jeroen Maes
Affiliation:
Facultad de Matemáticas, Departamento de Álgebra, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain ([email protected]), http://personal.us.es/fmuro
Fernando Muro
Affiliation:
Facultad de Matemáticas, Departamento de Álgebra, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain ([email protected]), http://personal.us.es/fmuro

Abstract

We develop a theory of minimal models for algebras over a Koszul operad with trivial differential defined over a commutative ring (containing $\mathbb {Q}$ in the symmetric case), not necessarily a field, extending and supplementing the work of Sagave for the associative case. Our minimal models are bigraded and contain a projective resolution of the homology.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allocca, M. P.. Homomorphisms of $L_{\infty }$-modules. J. Homotopy Relat. Struct. 9 (2014), 285298.Google Scholar
Adámek, J. and Rosický, J., Locally presentable and accessible categories, London Mathematical Society Lecture Note Series, Vol. 189 (Cambridge University Press, Cambridge, 1994).Google Scholar
Aponte Román, C. I., Livernet, M., Robertson, M., Whitehouse, S. and Ziegenhagen, S., Representations of derived $A$-infinity algebras, Women in Topology: Collaborations in Homotopy Theory, Contemp. Math., Vol. 641, 1–27 (Amer. Math. Soc., Providence, RI, 2015), MR 3380067.Google Scholar
Beck, J., Distributive laws, Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67), pp. 119–140 (Springer, Berlin, 1969), MR 0241502.Google Scholar
Berglund, A.. Homological perturbation theory for algebras over operads. Algeb. Geom. Topol. 14 (2014), 25112548.Google Scholar
Borceux, F., Handbook of categorical algebra 2, Encyclopedia of Math. and Its Applications, no. 51 (Cambridge University Press, 1994).CrossRefGoogle Scholar
Cartan, H. and Eilenberg, S.. Homological algebra (Princeton, N. J.: Princeton University Press, 1956). MR 0077480.Google Scholar
Cirici, J., Santander, D. E., Livernet, M. and Whitehouse, S.. Derived $A$-infinity algebras and their homotopies. Topology Appl. 235 (2018), 214268.MR 3760203.Google Scholar
Cheng, X. Z. and Getzler, E.. Transferring homotopy commutative algebraic structures. J. Pure Appl. Algebra 212 (2008), 25352542. MR 2440265.CrossRefGoogle Scholar
Cirici, J., Santander, D. E., Livernet, M. and Whitehouse, S., Model category structures and spectral sequences, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 150 (2020), no. 6, 2815–2848.Google Scholar
Dimitrova, B., Obstruction theory for operadic algebras, Ph.D. thesis, Universitäts- und Landesbibliothek Bonn, May 2012.Google Scholar
Dotsenko, V. and Poncin, N.. A tale of three homotopies. Appl. Categor. Struct. 24 (2016), 845873.Google Scholar
Dugger, D. and Shipley, B.. A curious example of triangulated-equivalent model categories which are not Quillen equivalent. Algebr. Geom. Topol. 9 (2009), 135166.2482071.Google Scholar
Fu, X., Guan, A., Livernet, M. and Whitehouse, S., Model category structures on multicomplexes. Topol. Appl. 316 (2022), 108104.CrossRefGoogle Scholar
Fresse, B.. On the homotopy of simplicial algebras over an operad. Trans. Amer. Math. Soc. 352 (2000), 41134141.1665330.CrossRefGoogle Scholar
Fresse, B., Koszul duality of operads and homology of partition posets, Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-Theory, Contemp. Math., Vol. 346, 115–215 (Amer. Math. Soc., Providence, RI, 2004), MR 2066499.Google Scholar
Fresse, B., Modules over operads and functors, Lecture Notes in Mathematics, Vol. 1967 (Springer-Verlag, Berlin, 2009). MR 2494775.Google Scholar
Fresse, B., Operadic cobar constructions, cylinder objects and homotopy morphisms of algebras over operads, Alpine Perspectives on Algebraic Topology, Contemp. Math., Vol. 504, pp. 125–188 (Amer. Math. Soc., Providence, RI, 2009). MR2581912.Google Scholar
Harper, J. E.. Homotopy theory of modules over operads and non-$\Sigma$ operads in monoidal model categories. J. Pure Appl. Algebra 214 (2010), 14071434.MR 2593672.CrossRefGoogle Scholar
Hinich, V.. Homological algebra of homotopy algebras. Comm. Algebra 25 (1997), 32913323.MR 1465117.CrossRefGoogle Scholar
Hinich, V., Erratum to ‘Homological algebra of homotopy algebras’, arXiv:math/0309453 (2003).Google Scholar
Hirschhorn, P. S., Model categories and their localizations, Mathematical Surveys and Monographs, Vol. 99 (American Mathematical Society, Providence, RI, 2003).Google Scholar
Kadeishvili, T. V.. The structure of the $A(\infty )$-algebra, and the Hochschild and Harrison cohomologies. Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 91 (1988), 1927.MR 1029003.Google Scholar
Kontsevich, M. and Soibelman, Y., Notes on $A_\infty$-algebras, $A_\infty$-categories and non-commutative geometry, Homological Mirror Symmetry, Lecture Notes in Phys., Vol. 757, pp. 153–219 (Springer, Berlin, 2009). MR 2596638.Google Scholar
Lefèvre-Hasegawa, K., Sur les A $_{\infty }$-catégories, Ph.D. thesis, Université Paris 7, 2003.Google Scholar
Lada, T. and Markl, M.. Strongly homotopy Lie algebras. Comm. Algebra 23 (1995), 21472161. MR 1327129.CrossRefGoogle Scholar
Livernet, M., Roitzheim, C. and Whitehouse, S.. Derived $A_\infty$-algebras in an operadic context. Algebr. Geom. Topol. 13 (2013), 409440.MR 3031646.Google Scholar
Loday, J.-L. and Vallette, B., Algebraic operads, Grundlehren Der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 346 (Springer, Heidelberg, 2012). MR 2954392.CrossRefGoogle Scholar
Livernet, M., Whitehouse, S. and Ziegenhagen, S.. On the spectral sequence associated to a multicomplex. J. Pure Appl. Algebra 224 (2020), 528535.Google Scholar
Maes, J., Derived homotopy algebras, Ph.D. thesis, Universidad de Sevilla, http://hdl.handle.net/11441/48473, October 2016.Google Scholar
McCleary, J., A user's guide to spectral sequences, 2nd ed., Cambridge Studies in Advanced Mathematics, Vol. 58 (Cambridge University Press, Cambridge, 2001). MR 1793722.Google Scholar
Muro, F. and Roitzheim, C.. Homotopy theory of bicomplexes. J. Pure Appl. Algebra 223 (2019), 19131939. MR 3906533.CrossRefGoogle Scholar
Muro, F.. Homotopy theory of nonsymmetric operads. Algebr. Geom. Topol. 11 (2011), 15411599. MR 2821434.Google Scholar
Muro, F.. Correction to the articles ‘Homotopy theory of nonsymmetric operads’, I-II. Algebr. Geom. Topol. 17 (2017), 38373852.MR 3709662.Google Scholar
Muro, F.. Derived universal Massey products, arXiv:2109.01421 [math.KT] (2021). To appear in Homology Homotopy Appl.Google Scholar
Richter, B.. Symmetry properties of the Dold-Kan correspondence. Math. Proc. Cambridge Philos. Soc. 134 (2003), 95102. MR 1937795.CrossRefGoogle Scholar
Sagave, S.. DG-algebras and derived $A_\infty$-algebras. J. Reine Angew. Math. 639 (2010), 73105.CrossRefGoogle Scholar