Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Hmidi, Taoufik
and
Keraani, Sahbi
2004.
Limite non visqueuse pour le système de Navier–Stokes dans un espace critique.
Comptes Rendus. Mathématique,
Vol. 338,
Issue. 9,
p.
689.
Abidi, Hammadi
2006.
Existence et unicité pour un fluide inhomogène.
Comptes Rendus. Mathématique,
Vol. 342,
Issue. 11,
p.
831.
Danchin, R.
2007.
Well-Posedness in Critical Spaces for Barotropic Viscous Fluids with Truly Not Constant Density.
Communications in Partial Differential Equations,
Vol. 32,
Issue. 9,
p.
1373.
Hmidi, Taoufik
and
Keraani, Sahbi
2007.
Global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces.
Advances in Mathematics,
Vol. 214,
Issue. 2,
p.
618.
Chen, Qionglei
Miao, Changxing
and
Zhang, Zhifei
2007.
A New Bernstein’s Inequality and the 2D Dissipative Quasi-Geostrophic Equation.
Communications in Mathematical Physics,
Vol. 271,
Issue. 3,
p.
821.
FANG, DAOYUAN
XU, JIANG
and
ZHANG, TING
2007.
GLOBAL EXPONENTIAL STABILITY OF CLASSICAL SOLUTIONS TO THE HYDRODYNAMIC MODEL FOR SEMICONDUCTORS.
Mathematical Models and Methods in Applied Sciences,
Vol. 17,
Issue. 10,
p.
1507.
Germain, Pierre
2008.
Strong solutions and weak-strong uniqueness for the nonhomogeneous Navier-Stokes system.
Journal d'Analyse Mathématique,
Vol. 105,
Issue. 1,
p.
169.
Danchin, Raphaël
and
Paicu, Marius
2008.
Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces.
Physica D: Nonlinear Phenomena,
Vol. 237,
Issue. 10-12,
p.
1444.
Chen, Qionglei
Miao, Changxing
and
Zhang, Zhifei
2008.
On the Well-Posedness for the Viscous Shallow Water Equations.
SIAM Journal on Mathematical Analysis,
Vol. 40,
Issue. 2,
p.
443.
Fan, Jishan
and
Nakamura, Gen
2008.
Local solvability of an inverse problem to the density-dependent Navier–Stokes equations.
Applicable Analysis,
Vol. 87,
Issue. 10-11,
p.
1255.
Abidi, Hammadi
and
Hmidi, Taoufik
2008.
On the Global Well-Posedness of the Critical Quasi-Geostrophic Equation.
SIAM Journal on Mathematical Analysis,
Vol. 40,
Issue. 1,
p.
167.
Danchin, Raphaël
and
Mucha, Piotr Bogusław
2009.
A critical functional framework for the inhomogeneous Navier–Stokes equations in the half-space.
Journal of Functional Analysis,
Vol. 256,
Issue. 3,
p.
881.
Fang, Daoyuan
and
Fang, Lin
2009.
Well‐posed problem of a pollutant model of the Kazhikhov–Smagulov type.
Mathematical Methods in the Applied Sciences,
Vol. 32,
Issue. 12,
p.
1467.
Xue, Liutang
2009.
On the well-posedness of incompressible flow in porous media with supercritical diffusion.
Applicable Analysis,
Vol. 88,
Issue. 4,
p.
547.
Gui, Guilong
and
Zhang, Ping
2009.
Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity.
Chinese Annals of Mathematics, Series B,
Vol. 30,
Issue. 5,
p.
607.
Abidi, Hammadi
2009.
Sur l'unicité pour le système de Boussinesq avec diffusion non linéaire.
Journal de Mathématiques Pures et Appliquées,
Vol. 91,
Issue. 1,
p.
80.
Dong, Hongjie
and
Pavlović, Nataša
2009.
A regularity criterion for the dissipative quasi-geostrophic equations.
Annales de l'Institut Henri Poincaré C, Analyse non linéaire,
Vol. 26,
Issue. 5,
p.
1607.
Mucha, Piotr Bogusław
2010.
Transport equation: Extension of classical results for divb∈BMO.
Journal of Differential Equations,
Vol. 249,
Issue. 8,
p.
1871.
Qian, Jianzhen
2010.
Well-posedness in critical spaces for incompressible viscoelastic fluid system.
Nonlinear Analysis: Theory, Methods & Applications,
Vol. 72,
Issue. 6,
p.
3222.
HASPOT, BORIS
2010.
CAUCHY PROBLEM FOR VISCOUS SHALLOW WATER EQUATIONS WITH A TERM OF CAPILLARITY.
Mathematical Models and Methods in Applied Sciences,
Vol. 20,
Issue. 07,
p.
1049.