No CrossRef data available.
Article contents
Cubic primals in [4] with polar heptahedra*
Published online by Cambridge University Press: 14 February 2012
Synopsis
This note sets out from the observation that it is not, in general, possible to express a homogeneous cubic polynomial in five variables as a sum of cubes of seven linear forms. Some of the geometry, to which particular cubics which do happen to be so expressible give rise, is described. Further particularisations are mentioned, and one such cubic investigated in some detail.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 77 , Issue 1-2 , 1977 , pp. 151 - 162
- Copyright
- Copyright © Royal Society of Edinburgh 1977
References
4Brusotti, L.Sulla curva razionale normale dello spazio a quattro dimensioni. Ann. Mat. Pura. Appl. 9 (1904), 331–352.CrossRefGoogle Scholar
5Edge, W. L.Klein's encounter with the simple group of order 660. Proc. London Math. Soc. 24 (1972), 647–668.CrossRefGoogle Scholar
6Hilbert, D.Über Büschel von binären Formen mit vorgeschriebener Funktionaldeterminante. Math. Ann. 33 (1889), 227–236; Gesamm. Abh. Berlin II, 165–175.CrossRefGoogle Scholar
8Meyer, W. F.Apolarität und rationale Kurven. Eine systematische Voruntersuchung zu einer allgemeinen Theorie der linearen Räume. (Tubingen, 1883).CrossRefGoogle Scholar
9Meyer, W. F.Über apolarität und rationale Kurven. Math. Ann. 21 (1883), 125–137CrossRefGoogle Scholar
11Schubert, H.Die n-dimensionale Verallgemeinerung der fundamentalen Aufgaben unseres Raum. Math. Ann. 26 (1886), 26–51.CrossRefGoogle Scholar
12Segre, C.Sulla forma Hessiana. Atti. Reale Accad Lincei 4 (1895), 143–148. Opere I, 305–311, Rome 1957.Google Scholar
14Turnbull, H. W.The theory of determinants, matrices and invariants (3rd edn.) (New York: Dover, 1960).Google Scholar
15Tyrrell, J. A. and Semple, J. G.Generalized Clifford parallelism. (Cambridge: Univ. Press, 1971).Google Scholar
17Zeuthen, H. G.Nouvelle démonstration de théorèmes sur des séries de points correspondants sur deux courbes. Math. Ann. 3 (1871), 150–156.CrossRefGoogle Scholar
18Zeuthen, H. G.Lehrbuch der abzählenden Methoden der Geometrie (Leipzig and Berlin: Teubner, 1914).Google Scholar