Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T23:04:20.050Z Has data issue: false hasContentIssue false

Cubic primals in [4] with polar heptahedra*

Published online by Cambridge University Press:  14 February 2012

W. L. Edge
Affiliation:
Department of Mathematics, University of Edinburgh

Synopsis

This note sets out from the observation that it is not, in general, possible to express a homogeneous cubic polynomial in five variables as a sum of cubes of seven linear forms. Some of the geometry, to which particular cubics which do happen to be so expressible give rise, is described. Further particularisations are mentioned, and one such cubic investigated in some detail.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Baker, H. F.Principles of geometry 4 (Cambridge: Univ. Press, 1925).Google Scholar
2Baker, H. F.Principles of geometry 6 (Cambridge: Univ. Press, 1933).Google Scholar
3Bertini, E.Introduzione alia geometria proiettiva degli iperspazi (Messina, 1923).Google Scholar
4Brusotti, L.Sulla curva razionale normale dello spazio a quattro dimensioni. Ann. Mat. Pura. Appl. 9 (1904), 331352.CrossRefGoogle Scholar
5Edge, W. L.Klein's encounter with the simple group of order 660. Proc. London Math. Soc. 24 (1972), 647668.CrossRefGoogle Scholar
6Hilbert, D.Über Büschel von binären Formen mit vorgeschriebener Funktionaldeterminante. Math. Ann. 33 (1889), 227236; Gesamm. Abh. Berlin II, 165–175.CrossRefGoogle Scholar
7Klein, F.Gesammelte Math. Abh. III (Berlin, 1923).CrossRefGoogle Scholar
8Meyer, W. F.Apolarität und rationale Kurven. Eine systematische Voruntersuchung zu einer allgemeinen Theorie der linearen Räume. (Tubingen, 1883).CrossRefGoogle Scholar
9Meyer, W. F.Über apolarität und rationale Kurven. Math. Ann. 21 (1883), 125137CrossRefGoogle Scholar
10Richmond, H. W.On canonical forms. Quart. J. Math. 33 (1902), 331340Google Scholar
11Schubert, H.Die n-dimensionale Verallgemeinerung der fundamentalen Aufgaben unseres Raum. Math. Ann. 26 (1886), 2651.CrossRefGoogle Scholar
12Segre, C.Sulla forma Hessiana. Atti. Reale Accad Lincei 4 (1895), 143148. Opere I, 305–311, Rome 1957.Google Scholar
13Telling, H. G.The rational quartic curve (Cambridge: Univ. Press, 1936).Google Scholar
14Turnbull, H. W.The theory of determinants, matrices and invariants (3rd edn.) (New York: Dover, 1960).Google Scholar
15Tyrrell, J. A. and Semple, J. G.Generalized Clifford parallelism. (Cambridge: Univ. Press, 1971).Google Scholar
16Wakeford, E. K.On canonical forms. Proc. London Math. Soc. 18 (1919), 403410.Google Scholar
17Zeuthen, H. G.Nouvelle démonstration de théorèmes sur des séries de points correspondants sur deux courbes. Math. Ann. 3 (1871), 150156.CrossRefGoogle Scholar
18Zeuthen, H. G.Lehrbuch der abzählenden Methoden der Geometrie (Leipzig and Berlin: Teubner, 1914).Google Scholar