Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T06:30:00.945Z Has data issue: false hasContentIssue false

Critical growth problems for polyharmonic operators

Published online by Cambridge University Press:  14 November 2011

Filippo Gazzola
Affiliation:
Dipartimento di Scienze T.A.—via Cavour 84, 15100 Alessandria, Italy

Abstract

We prove that critical growth problems for polyharmonic operators admit nontrivial solutions for a wide class of lower-order perturbations of the critical term. The results highlight the phenomenon of bifurcation of the critical dimensions discovered by Pucci and Serrin; moreover, we show that another bifurcation seems to appear for ‘nonresonant’ dimensions.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ambrosetti, A. and Rabinowitz, P. H.. Dual variational methods in critical point theory and applications. J. Fund. Anal. 14 (1973), 349–81.CrossRefGoogle Scholar
2Arioli, G. and Gazzola, F.. Quasilinear elliptic equations at critical growth. NoDEA Nonlinear Differential Equations Appl. (to appear).Google Scholar
3Bartolo, P., Benci, V. and Fortunate, D.Abstract critical point theorems and applications to some nonlinear problems with ‘strong’ resonance at infinity. Nonlinear Anal. 7 (1983), 9811012.CrossRefGoogle Scholar
4Bernis, F., Garcia-Azorero, J. and Peral, I.. Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order. Adv. Differential Equations 1 (1996), 219–40.CrossRefGoogle Scholar
5Brezis, H. and Nirenberg, L.. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36 (1983), 437–77.CrossRefGoogle Scholar
6Capozzi, A., Fortunato, D. and Palmieri, G.. An existence result for nonlinear elliptic problems involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 463é70.CrossRefGoogle Scholar
7Cerami, G., Fortunato, D. and Struwe, M.. Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 341–50.CrossRefGoogle Scholar
8Comte, M.. Solutions of elliptic equations with critical Sobolev exponent in dimension three. Nonlinear Anal. 17 (1991), 445–55.CrossRefGoogle Scholar
9Edmunds, D. E., Fortunato, D. and Jannelli, E.. Critical exponents, critical dimensions and the biharmonic operator. Arch. Rational Mech. Anal. 112 (1990), 269–89.CrossRefGoogle Scholar
10Fortunato, D. and Jannelli, E.. Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains. Proc. Roy. Soc. Edinburgh Sect. A 105 (1987), 205–13.CrossRefGoogle Scholar
11Gazzola, F. and Ruf, B.. Lower order perturbations of critical growth nonlinearities in semilinear elliptic equations. Adv. Differential Equations 2 (1997), 555–72.CrossRefGoogle Scholar
12Grunau, H. C.. Positive solutions to semilinear polyharmonic Dirichlet problems involving critical Sobolev exponents. Calc. Var. Partial Differential Equations 3 (1995), 243–52.CrossRefGoogle Scholar
13Grunau, H. C.. Critical exponents and multiple critical dimensions for polyharmonic operators. Boll. Un. Mat. Ital. (to appear).Google Scholar
14Lions, P. L.. The concentration-compactness principle in the calculus of variations. The limit case, Part 1. Rev. Mat. Iberoamericana 1 (1985), 145201.CrossRefGoogle Scholar
15Lupo, D. and Micheletti, A. M.. On multiple eigenvalues of selfadjoint compact operators. J. Math. Anal. Appl. 173 (1993), 106–16.CrossRefGoogle Scholar
16Lupo, D. and Micheletti, A. M.. On the persistence of the multiplicity of eigenvalues for some variational elliptic operator depending on the domain. J. Math. Anal. Appl. 193 (1995), 9901002.CrossRefGoogle Scholar
17Lupo, D. and Micheletti, A. M.. A remark on the structure of the set of perturbations which keep fixed the multiplicity of two eigenvalues. Rev. Mat. Apl. 16 (1995), 4756.Google Scholar
18Micheletti, A. M.. Perturbazione dello spettro deU'operatore di Laplace in relazione ad una variazione del campo. Ann. Scuola Norm. Sup. Pisa 26 (1972), 151–69.Google Scholar
19Noussair, E. S., Swanson, C. A. and Jianfu, Yang. Critical semilinear biharmonic equations in ℝn. Proc. Roy. Soc. Edinburgh Sect. A 121 (1992), 139–48.CrossRefGoogle Scholar
20Pucci, P. and Serrin, J.. A general variational identity. Indiana Univ. Math. J. 35 (1986), 681703.CrossRefGoogle Scholar
21Pucci, P. and Serrin, J.. Critical exponents and critical dimensions for polyharmonic operators. J. Math. Pures Appl. 69 (1990), 5583.Google Scholar
22Rabinowitz, P. H.. Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics 65 (Providence, R.I.: American Mathematical Society, 1986).Google Scholar
23Struwe, M.. Variational methods—Applications to nonlinear partial differential equations and Hamiltonian systems (Berlin: Springer, 1990).Google Scholar
24Swanson, C. A.. The best Sobolev constant. Appl. Anal. 47 (1992), 227–39.CrossRefGoogle Scholar
25Yamabe, H.. On the deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12 (1960), 2137.Google Scholar