Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:51:24.823Z Has data issue: false hasContentIssue false

Coupled operator systems and multiparameter spectral theory*

Published online by Cambridge University Press:  14 November 2011

G. F. Roach
Affiliation:
Department of Mathematics, University of Strathclyde
B. D. Sleeman
Affiliation:
Department of Mathematics, University of Dundee

Synopsis

In this paper a spectral theory for completely coupled linear operator systems is developed. These systems take the form

where Ak, Bk are n × n matrices with operator entries. Λ is an n × n matrix with complex scalar entries and xk is an n × 1 column vector. The main result is a Parseval equality and expansion theorem.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Atkinson, F. V.Multiparameter spectral theory. Bull. Amer. Math. Soc. 74 (1968), 127.CrossRefGoogle Scholar
2Atkinson, F. V.Multiparameter eigenvalue problems. Vol. 1, Matrices and compact operators (New York: Academic Press, 1972).Google Scholar
3Browne, P. J.A multiparameter eigenvalue problem. J. Math. Anal. Appl. 38 (1972), 553568.CrossRefGoogle Scholar
4Browne, P. J.Multiparameter spectral theory. Indiana Univ. Math. J. 24 (1974), 249257.CrossRefGoogle Scholar
5Källström, A. and Sleeman, B. D.An abstract multiparameter eigenvalue problem. Uppsala Univ. Dept. Math. Report 2 (1975).Google Scholar
6Källström, A. and Sleeman, B. D.An abstract multiparameter spectral theory. Dundee Univ. Dept. Math. Report DE 75: 2.Google Scholar
7Källström, A. and Sleeman, B. D.Solvability of a linear operator system. J. Math. Anal. Appl. 55 (1976), 785793.CrossRefGoogle Scholar
8Källström, A. and Sleeman, B. D.An abstract relation for multiparameter eigenvalue problems. Proc. Roy. Soc. Edinburgh Sect. A. 74 (1976), 135143.CrossRefGoogle Scholar
9Källström, A. and Sleeman, B. D.Multiparameter spectral theory. Ark. Mat. 15 (1977), 9399.CrossRefGoogle Scholar
10Anselone, P. M.Matrices of linear operators. Enseignement Math. 9 (1964), 191197.Google Scholar
11Bachman, G. and Narici, L.Functional Analysis (New York: Academic Press, 1966).Google Scholar
12Dunford, N.A spectral theory for certain operators on a direct sum of Hilbert spaces. Math. Ann. 162 (1966), 294330.CrossRefGoogle Scholar
13Prugovečki, E.Quantum mechanics in Hilbert space (New York: Academic Press, 1971).Google Scholar