Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T02:00:07.079Z Has data issue: false hasContentIssue false

Conley index for manifold-valued retarded functional differential equations without uniqueness of solutions

Published online by Cambridge University Press:  19 April 2021

M. C. Carbinatto
Affiliation:
Departamento de Matemática, ICMC-USP, Caixa Postal 668, 13.560-970, São CarlosSP, Brazil ([email protected])
K. P. Rybakowski
Affiliation:
Universität Rostock, Institut für Mathematik, Ulmenstraße 69, Haus 3, 18057, Rostock, Germany ([email protected])

Abstract

We develop a Conley index theory for retarded functional differential equations $\dot x=f(x_{t})$ with values in a differentiable manifold and (merely) continuous nonlinearities f. We use this index to establish an existence result for nonconstant full solutions of such equations.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benevieri, P., Calamai, A., Furi, M. and Pera, M. P.. Retarded functional differential equations on manifolds and applications to motion problems for forced constrained systems. Adv Nonlinear Stud. 9 (2009), 199214.CrossRefGoogle Scholar
Berger, M. and Gostiaux, B.. Differential geometry: manifolds, curves, and surfaces (New York: Springer Verlag, 1988).CrossRefGoogle Scholar
Carbinatto, M. C. and Rybakowski, K. P.. On a general Conley index continuation principle for singular perturbation problems. Ergodic Theory Dyn. Syst. 22 (2002), 729755.CrossRefGoogle Scholar
Carbinatto, M. C. and Rybakowski, K. P.. Conley index and homology index braids in singular perturbation problems without uniqueness of solutions. Topol. Methods Nonlinear Anal. 35 (2010), 132.Google Scholar
Carbinatto, M. C. and Rybakowski, K. P.. Conley index continuation for some classes of RFDEs on manifolds. Fundam. Math. 250 (2020), 4162.CrossRefGoogle Scholar
Diekmann, O., van Gils, S. A., Verduyn Lunel, S. M. and Walther, H.-O.. Delay equations, functional-, complex- and nonlinear analysis (New York: Springer-Verlag, 1995).Google Scholar
Hale, J. and Verduyn Lunel, S. M.. Introduction to functional differential equations (New York: Springer-Verlag, 1993).CrossRefGoogle Scholar
Hale, J., Magalhães, L. T. and Oliva, W.. An introduction to infinite dimensional dynamical systems - geometric theory — with an appendix by K. P. Rybakowski (New York: Springer-Verlag, 2002).Google Scholar
Izydorek, M. and Rybakowski, K. P.. On the Conley index in Hilbert spaces in the absence of uniqueness. Fundam. Math. 171 (2002), 3152.CrossRefGoogle Scholar
Lasota, A. and Yorke, J. A.. The generic property of existence of solutions of differential equations in Banach space. J. Diff. Equ. 13 (1973), 112.CrossRefGoogle Scholar
Oliva, W. M.. Functional differential equations on compact manifolds and an approximation theorem. J. Diff. Equ. 5 (1969), 483496.CrossRefGoogle Scholar
Rybakowski, K. P.. On the homotopy index for infinite-dimensional semiflows. Trans. AMS 269 (1982), 351382.CrossRefGoogle Scholar
Rybakowski, K. P.. The homotopy index and partial differential equations (Berlin: Springer-Verlag, 1987).CrossRefGoogle Scholar