Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T23:04:09.945Z Has data issue: false hasContentIssue false

Complete representation of some functionals showing the Lavrentieff phenomenon

Published online by Cambridge University Press:  12 July 2007

A. Corbo Esposito
Affiliation:
Università di Cassino, Dipartimento di Automazione, Elettromagnetismo, Ingegneria dell'Informazione e Matematica Industriale, via G. Di Biasio no. 43, 03043 Cassino (FR), Italy ([email protected])
T. Durante
Affiliation:
Università di Cassino, Dipartimento di Automazione, Elettromagnetismo, Ingegneria dell'Informazione e Matematica Industriale, via G. Di Biasio no. 43, 03043 Cassino (FR), Italy ([email protected])

Abstract

The functional F(u) = ∫Bf(x, Du) is considered, where B is the unit ball in R2, u varies in the set of the locally Lipschitz functions on R2 and f belongs to a family containing, as model case, the following integrand:

The computation of the relaxed functional is provided yielding an explicit representation formula.

This formula nevertheless is not integral, because is not a measure and does not coincide with the obvious extension of F over all W1,p(B).

This phenomenon is essentially due to the non-standard growth behaviour of f(x, z) in the variable z.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)