Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:11:31.314Z Has data issue: false hasContentIssue false

The compact weak topology on a Banach space

Published online by Cambridge University Press:  14 November 2011

Manuel González
Affiliation:
Departamento de Matemáticas, Facultad de Ciencias, Universidad de Cantabria, 39071 Santander, Spain
Joaquín M. Gutiérrez
Affiliation:
Departamento de Matemática Aplicada, ETS de Ingenieros Industrials, Universidad Politécnica de Madrid, C. José Gutiérrez Abascal, 2, 28006 Madrid, Spain

Synopsis

The compact weak topology (kw) on a Banach space is defined as the finest topology that agrees with the weak topology on weakly compact subsets. It appears in a natural manner in the study of certain classes of continuous and holomorphic maps between Banach spaces. In this paper we treat the kw topology and the finest locally convex topology contained in kw, which we call the ckw topology. We prove that kw = ckw if and only if the space is reflexive or Schur, and we derive characterisations of Banach spaces not containing l1, and of other classes of Banach spaces, in terms of these topologies. We also show that ckw is the topology of uniform convergence on (L)-subsets of the dual space. As a consequence, Banach spaces with the reciprocal Dunford–Pettis property are characterised.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Aron, R. M. and Prolla, J. B.. Polynomial approximation of differentiable functions on Banach spaces. J. Reine Angew. Math. 313 (1980), 195216.Google Scholar
2Bourgain, J.. Dunford–Pettis operators on L 1 and the Radon–Nikodym property. Israel J. Math. 37 (1980), 3447.CrossRefGoogle Scholar
3Collins, H. S.. Completeness and compactness in linear topological spaces. Trans. Amer. Math. Soc. 79 (1955), 256280.CrossRefGoogle Scholar
4Day, M. M.. Normed Linear Spaces, Ergeb. Math. Grenzgeb. 21, 3rd edn (Berlin: Springer, 1973).CrossRefGoogle Scholar
5Diestel, J.. Sequences and Series in Banach Spaces, Graduate Texts in Mathematics 92 (Berlin: Springer, 1984).CrossRefGoogle Scholar
6Diestel, J. and Uhl, J. J. Jr.Vector Measures, Math. Surveys 15 (Providence, R. I.: American Mathematical Society, 1977).CrossRefGoogle Scholar
7Dubuc, E. J. and Porta, H.. Convenient categories of topological algebras, and their duality theory. J. Pure Appl. Algebra 1 (1971), 281316.CrossRefGoogle Scholar
8Emmanuele, G.. A dual characterization of Banach spaces not containing l 1. Bull. Polish Acad. Sci. Math. 34 (1986), 155160.Google Scholar
9Ferrera, J.. Spaces of weakly continuous functions. Pacific J. Math. 102 (1982), 285291.CrossRefGoogle Scholar
10Ferrera, J., Gómez, J. and Llavona, J. G.. On completion of spaces of weakly continuous functions. Bull. London Math. Soc. 15 (1983), 260264.CrossRefGoogle Scholar
11Floret, K.. Weakly Compact Sets, Lecture Notes in Mathematics 801, (Berlin: Springer, 1980).CrossRefGoogle Scholar
12Franklin, S. P.. Spaces in which sequences suffice. Fund. Math. LVII (1965), 107115.CrossRefGoogle Scholar
13Gillman, L. and Jerison, M.. Rings of Continuous Functions, Graduate Texts in Mathematics 43 (Berlin: Springer, 1976).Google Scholar
14Gómez, J.. On local convexity of bounded weak topologies on Banach spaces. Pacific J. Math. 110 (1984), 7176.CrossRefGoogle Scholar
15Grothendieck, A.. Sur les applications linearies faiblement compactes d'espaces du type C(K). Canad. J. Math. 5 (1953), 129173.CrossRefGoogle Scholar
16Gutiérrez, J. M.. Weakly continuous functions on Banach spaces not containing l 1 (preprint, 1990).Google Scholar
17Jaramillo, J. A. and Llavona, J. G.. Homomorphisms between algebras of continuous functions. Canad. J. Math. XLI(1) (1989), 132162.Google Scholar
18Jarchow, H.. Locally Convex Spaces (Stuttgart: B. G. Teubner, 1981).CrossRefGoogle Scholar
19Leavelle, T. L.. The reciprocal Dunford–Pettis property. Ann. Mat. Pura. Appl. (to appear).Google Scholar
20Porta, H.. Compactly determined locally convex topologies. Math. Ann. 196 (1972), 91100.CrossRefGoogle Scholar
21Rosenthal, H. P.. Point-wise compact subsets of the first Baire class. Amer. J. Math. 99 (1977), 362378.CrossRefGoogle Scholar
22Rosenthal, H. P.. Some recent discoveries in the isomorphic theory of Banach spaces. Bull. Amer. Math. Soc. 84(5) (1978), 803831.CrossRefGoogle Scholar
23Webb, J. H.. Sequential convergence in locally convex spaces. Proc. Cambridge Philos. Soc. 64 (1968), 341364.CrossRefGoogle Scholar
24Wheeler, R. F.. The equicontinuous weak* topology and semi-reflexivity. Studio Math. XLI (1972), 243256.CrossRefGoogle Scholar