Hostname: page-component-669899f699-tzmfd Total loading time: 0 Render date: 2025-04-25T05:36:31.075Z Has data issue: false hasContentIssue false

The commutators of multilinear Calderón–Zygmund operators on weighted Hardy spaces

Published online by Cambridge University Press:  26 June 2023

Yanyan Han
Affiliation:
School of Mathematical Sciences, Xiamen University, Xiamen 361005, People's Republic of China ([email protected]) School of Information Network Security, People's Public Security University of China, Beijing 100038, People's Republic of China
Yongming Wen
Affiliation:
School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, People's Republic of China ([email protected])
Huoxiong Wu
Affiliation:
School of Mathematical Sciences, Xiamen University, Xiamen 361005, People's Republic of China ([email protected])
Qingying Xue
Affiliation:
School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China ([email protected])

Abstract

In this paper, we study the behaviours of the commutators $[\vec b,\,T]$ generated by multilinear Calderón–Zygmund operators $T$ with $\vec b=(b_1,\,\ldots,\,b_m)\in L_{\rm loc}(\mathbb {R}^n)$ on weighted Hardy spaces. We show that for some $p_i\in (0,\,1]$ with $1/p=1/p_1+\cdots +1/p_m$, $\omega \in A_\infty$ and $b_i\in \mathcal {BMO}_{\omega,p_i}$ ($1\le i\le m$), which are a class of non-trivial subspaces of ${\rm BMO}$, the commutators $[\vec b,\,T]$ are bounded from $H^{p_1}(\omega )\times \cdots \times H^{p_m}(\omega )$ to $L^p(\omega )$. Meanwhile, we also establish the corresponding results for a class of maximal truncated multilinear commutators $T_{\vec b}^*$.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Coifman, R. R. and Meyer, Y.. On commutators of singular integrals and bilinear singular integrals. Trans. Amer. Math. Soc. 212 (1975), 315331.10.1090/S0002-9947-1975-0380244-8CrossRefGoogle Scholar
Coifman, R. R. and Meyer, Y.. Commutateurs d'intégrales singulières et opérateurs multilinéaires. Ann. Inst. Fourier(Grenoble) 28 (1978), 177202.10.5802/aif.708CrossRefGoogle Scholar
Cruz-Uribe, D., Martell, J. M. and Pérez, C.. Sharp weighted estimates for classical operators. Adv. Math. 229 (2012), 408441.10.1016/j.aim.2011.08.013CrossRefGoogle Scholar
Cruz-Uribe, D., Moen, K. and Nguyen, H. V.. The boundedness of multilinear Calderón-Zygmund operators on weighted and variable Hardy spaces. Publ. Mat. 63 (2019), 679713.10.5565/PUBLMAT6321908CrossRefGoogle Scholar
Cruz-Uribe, D., Moen, K. and Nguyen, H. V.. A new approach to norm inequalities on weighted and variable Hardy spaces. Ann. Acad. Sci. Fenn. Math. 45 (2020), 175198.10.5186/aasfm.2020.4526CrossRefGoogle Scholar
Fefferman, C. and Stein, E. M.. Some maximal inequalities. Amer. J. Math. 93 (1971), 107115.10.2307/2373450CrossRefGoogle Scholar
García-Cuerva, J. and Rubio de Francia, J. L.. Weighted norm inequalities and related topics, North-Holland Mathematics Studies, Vol. 116 (North-Holland Publishing Co., Amsterdam, 1985).Google Scholar
Grafakos, L. and Kalton, N.. Multilinear Calderón-Zygmund operators on Hardy spaces. Collect. Math. 52 (2001), 169179.Google Scholar
Grafakos, L. and Torres, R. H.. Maximal operator and weighted norm inequalities for multilinear singular integrals. Indiana Univ. Math. J. 51 (2002), 12611276.10.1512/iumj.2002.51.2114CrossRefGoogle Scholar
Grafakos, L. and Torres, R. H.. Multilinear Calderón-Zygmund theory. Adv. Math. 165 (2002), 124164.10.1006/aima.2001.2028CrossRefGoogle Scholar
Harboure, E., Segovia, C. and Torrea, J. L.. Boundedness of commutators of fractional and singular integrals for the extreme values of $p$. Illinois J. Math. 41 (1997), 676700.10.1215/ijm/1256068988CrossRefGoogle Scholar
He, S. and Liang, Y.. The boundedness of commutators of multilinear Marcinkiewicz integral. Nonlinear Anal. 195 (2020), 111727.10.1016/j.na.2019.111727CrossRefGoogle Scholar
Huy, D. Q. and Ky, L. D.. Weighted Hardy space estimates for commutators of Calderón-Zygmund operators. Vietnam J. Math. 49 (2021), 10651077.10.1007/s10013-020-00406-2CrossRefGoogle Scholar
Kunwar, I. and Ou, Y.. Two-weight inequalities for multilinear commutators. New York J. Math. 24 (2018), 9801003.Google Scholar
Lerner, A. K., Ombrosi, S., Pérez, C., Torres, R. H. and Trujillo-González, R.. New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory. Adv. Math. 220 (2009), 12221264.10.1016/j.aim.2008.10.014CrossRefGoogle Scholar
Lerner, A. K., Ombrosi, S. and Rivera-Ríos, I. P.. On pointwise and weighted estimates for commutators of Calderón-Zygmund operators. Adv. Math. 319 (2017), 153181.10.1016/j.aim.2017.08.022CrossRefGoogle Scholar
Li, W., Xue, Q. and Yabuta, K.. Multilinear Calderón-Zygmund operators on weighted Hardy spaces. Studia Math. 199 (2010), 116.10.4064/sm199-1-1CrossRefGoogle Scholar
Li, W., Xue, Q. and Yabuta, K.. Maximal operator for multilinear Calderón-Zygmund singular integral operators on weighted Hardy spaces. J. Math. Anal. Appl. 373 (2011), 384392.10.1016/j.jmaa.2010.07.057CrossRefGoogle Scholar
Liang, Y., Ky, L. D. and Yang, D.. Weighted endpoint estimates for commutators of Calderón-Zygmund operators. Proc. Amer. Math. Soc. 144 (2016), 51715181.10.1090/proc/13130CrossRefGoogle Scholar
Pérez, C. and Torres, R. H.. Sharp maximal function estimates for multilinear singular integrals. Contemp. Math. 320 (2003), 323331.10.1090/conm/320/05615CrossRefGoogle Scholar
Wen, Y., Wu, H. and Xue, Q.. Maximal operators of multilinear singular integrals on weighted Hardy type spaces. Chinese Ann. Math. Ser. B 44 (2023), 391406.10.1007/s11401-023-0022-0CrossRefGoogle Scholar
Xue, Q.. Weighted estimates for the iterated commutators of multilinear maximal and fractional type operators. Studia Math. 217 (2013), 97122.10.4064/sm217-2-1CrossRefGoogle Scholar