Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T12:13:33.705Z Has data issue: false hasContentIssue false

Commutators and analytic families of operators

Published online by Cambridge University Press:  14 November 2011

María J. Carro
Affiliation:
Departament de Matemàtic Aplicada i Anàlisi, Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 585, 08071 Barcelona, Spain ([email protected])

Extract

This work connects the theory of commutators with analytic families of operators in abstract interpolation theory. Our main result asserts that if {Lξ}0≤Reξ≤1 is an analytic family of operators satisfying some conditions, then [Lθ,Ω] +(Lξ)′(θ): Āθ→ Bθ is bounded. From this, we can deduce the boundedness of the commutator .

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Calderón, A. P.. Intermediate spaces and interpolation, the complex method. Studia Math. 24 (1964), 113190.CrossRefGoogle Scholar
2Carro, M. J. and Cerdà, J.. On the interpolation of analytic families of operators. Israel Math. Conf. Proc. (Haifa) 5 (1992), 2133.Google Scholar
3Carro, M. J., Cerdà, J., Milman, M. and Soria, J.. Schechter methods of interpolationand commutators. Math. Nachr. 174 (1995), 3553.CrossRefGoogle Scholar
4Carro, M. J., Cerdà, J. and Soria, J.. Commutators and interpolation methods. Ark. Mat. 33 (1995), 199216.CrossRefGoogle Scholar
5Chanillo, S.. A note on commutators. Indiana Univ. Math. J. 31 (1982), 716.CrossRefGoogle Scholar
6Coifman, R. R., Rochberg, R. and Weiss, G.. Derivatives of analytic families of Banach spaces. Ann. Math. 118 (1983), 315347.Google Scholar
7Cwikel, M. and Janson, S.. Factorization theorems for Hardy spaces in several variables. Ann. Math. 103 (1976), 611635.Google Scholar
8Cwikel, M., Jawerth, B. and Milman, M.. The domain spaces of quailogarithmic operators. Trans. AMS 138 (1990), 170220.Google Scholar
9Cwikel, M., Jawerth, B., Milman, M. and Rochberg, R.. Differential estimates and commutators in interpolation theory. Analysis at Urbana: Lond. Math. Soc. Lecture Notes 317 (1989), 599609.Google Scholar
10García-Cuerva, J. and Francia, J. L. Rubio de. Weighted norm inequalities and related topics (North-Holland, 1985).Google Scholar
11Muckenhoupt, B. and Wheeden, R.. Weighted norm inequalities for fractional integrals. Trans. AMS 192 (1974), 261275.Google Scholar
12Rochberg, R. and Weiss, G.. Derivatives of analytic families of Banach spaces. Ann. Math. 118 (1983), 315347.CrossRefGoogle Scholar
13Schechter, M.. Complex interpolation. Comp. Math. 18 (1967), 117147.Google Scholar
14Sobolev, S.. On a theorem in functional analysis. Mat. Sb. 4 (1938), 471497. (English transl. AMS Transl. 34 (1963), 39–68.)Google Scholar
15Stafney, J.. The spectrum of an operator on an interpolation space. Trans. AMS 144 (1969), 333349.CrossRefGoogle Scholar
16Stein, E.. Interpolation of linear operators. Trans. AMS 83 (1956), 482492.CrossRefGoogle Scholar
17Triebel, H.. Interpolation theory, function spaces, differential operators (Amsterdam, New York and Oxford: North-Holland, 1978).Google Scholar