Published online by Cambridge University Press: 14 November 2011
The definition of Cohen elements in a commutative Banach algebra with a countable bounded approximate identity given by Esterle is modified slightly to be more analogous to the invertible elements in a unital Banach algebra. With the modified definition the n1-Cohen factorization results that were proved by Esterle are shown tohold in the semigroup of Cohen elements. If is the algebra of continuous complex valued functions vanishing at infinity on a σ-compact locally compact Hausdorff space X, then the Cohen elements in are identified and a natural quotient of a subsemigroup of Cohen elements is shown to be a group, isomorphic to the abstract index group of C(X∪{∞}).