Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T02:08:20.407Z Has data issue: false hasContentIssue false

Change of stability for Schrödinger semigroups*

Published online by Cambridge University Press:  14 November 2011

K. J. Brown
Affiliation:
Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh EH 14 4AS, U.K.
D. Daners
Affiliation:
Departamento de Mathemática Aplicada, Universidad Complutense de Madrid, 28040-Madrid, Spain
J. López-Gómez
Affiliation:
Departamento de Mathemática Aplicada, Universidad Complutense de Madrid, 28040-Madrid, Spain

Abstract

In this paper we analyse the change of stability of Schrödinger semigroups with indefinite potentials when a coupling parameter varies. Generically, the change of stability takes place at a principal eigenvalue associated with the problem. The uniqueness of the principal eigenvalue is shown for several classes of potentials.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Allegretto, W.. Principal eigenvalues for indefinite weight elliptic problems in RN. Proc. Amer. Math. Soc. 116 (1992), 701–6.Google Scholar
2Arendt, W. and Batty, C. J. K.. Exponential stability of a diffusion equation with absorption. Differential Integral Equations 6 (1993), 1009–24.CrossRefGoogle Scholar
3Beltramo, A. and Hess, P.. On the principal eigenvalues of a periodic-parabolic operator. Comm. Partial Differential Equations 9 (1984), 919–24.CrossRefGoogle Scholar
4Browder, F. E.. On the spectral theory of elliptic differential operators. I. Math. Ann. 142 (1961), 22130.CrossRefGoogle Scholar
5Brown, K. J., Cosner, C. and Fleckinger, J.. Principal eigenvalues for problems with indefinite weight function on RN. Proc. Amer. Math. Soc. 109 (1990), 147–55.Google Scholar
6Brown, K. J. and Tertikas, A.. The existence of principal eigenvalues for problems with indefinite weight functions on RN. Proc. Roy. Soc. Edinburgh, Sect. A 123 (1993), 561–9.CrossRefGoogle Scholar
7Clément, P., Heijmans, H. J. A. M.et al. One-parameter Semigroups, CWI Monograph 5 (Amsterdam: North-Holland, 1987).Google Scholar
8Daners, D. and Koch Medina, P.. Abstract Evolution Equations, Periodic Problems and Applications, Pitman Research Notes in Mathematics 279 (Harlow: Longman, 1992).Google Scholar
9Daners, D. and Koch Medina, P.. Superconvexity of the evolution operator and parabolic eigenvalue problems on RN. Differential Integral Equations 7 (1994), 235–55.CrossRefGoogle Scholar
10Hess, P. and Kato, T.. On some linear and nonlinear eigenvalue problems with an indefinite weight function. Comm. Partial Differential Equations 5 (1980), 9991030.CrossRefGoogle Scholar
11Itô, K. and McKean, H. P.. Diffusion Processes and Their Sample Paths (Berlin: Springer, 1965).Google Scholar
12Kato, T.. Perturbation Theory for Linear Operators (New York: Springer, 1966).Google Scholar
13Kato, T.. Superconvexity of the spectral radius and convexity of the spectral bound and the type. Math. Z. 180 (1982), 265–73.CrossRefGoogle Scholar
14Li, Y. and Ni, W. M.. On conformal scalar curvature equations in RN. Duke Math. J. 57 (1988), 895924.CrossRefGoogle Scholar
15Nagel, R.et al. One Parameter Semigroups of Positive Operators, Lecture Notes in Mathematics 1184 (Berlin: Springer, 1986).Google Scholar
16Protter, M. H. and Weinberger, H. F.. Maximum Principles in Differential Equations (New York: Springer, 1984).CrossRefGoogle Scholar
17Schaefer, H. H.. Banach Lattices and Positive Operators (Berlin: Springer, 1974).CrossRefGoogle Scholar
18Simon, B.. Large time behaviour of the Lp norm of Schrödinger operators. J. Fund. Anal. 40 (1981), 6683.CrossRefGoogle Scholar
19Simon, B.. Schrödinger semigroups. Bull. Amer. Math. Soc. 7 (1982), 447526.CrossRefGoogle Scholar