Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T02:29:57.216Z Has data issue: false hasContentIssue false

Boardman–Vogt tensor products of absolutely free operads

Published online by Cambridge University Press:  26 January 2019

Murray Bremner
Affiliation:
Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada ([email protected])
Vladimir Dotsenko
Affiliation:
School of Mathematics, Trinity College Dublin, Ireland and Departamento de Matemáticas, CINVESTAV-IPN, Col. San Pedro Zacatenco, México, D.F., CP 07360, Mexico ([email protected])

Abstract

To the memory of Trevor Evans (1925–1991),

the pioneer of interchange laws in universal algebra

We establish a combinatorial model for the Boardman–Vogt tensor product of several absolutely free operads, that is, free symmetric operads that are also free as 𝕊-modules. Our results imply that such a tensor product is always a free 𝕊-module, in contrast with the results of Kock and Bremner–Madariaga on hidden commutativity for the Boardman–Vogt tensor square of the operad of non-unital associative algebras.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Asinowski, A., Barequet, G., Mansour, T. and Pinter, R.. Cut equivalence of d-dimensional guillotine partitions. Discrete Math. 331 (2014), 165174.CrossRefGoogle Scholar
2Bagherzadeh, F. and Bremner, M.. Commutativity in double interchange semigroups. Appl. Categ. Structures 26 (2018), 11851210.CrossRefGoogle Scholar
3Boardman, J. and Vogt, R. M.. Homotopy invariant algebraic structures on topological spaces. Lecture Notes in Mathematics, vol. 347 (Berlin-New York: Springer-Verlag, 1973).CrossRefGoogle Scholar
4Bremner, M. and Madariaga, S.. Permutation of elements in double semigroups. Semigr. Forum 92 (2016), 335360.CrossRefGoogle Scholar
5Dunn, G.. Tensor product of operads and iterated loop spaces. J. Pure Appl. Algebra 50 (1988), 237258.CrossRefGoogle Scholar
6Dwyer, W. and Hess, K.. The Boardman-Vogt tensor product of operadic bimodules. In Algebraic topology: applications and new directions (ed. Ulrike Tillmann, Søren Galatius, and Dev Sinha). Contemporary Mathematics, vol. 620, pp. 7198 (Providence, RI: American Mathematical Society, 2014).Google Scholar
7Eckmann, B. and Hilton, P.. Group-like structures in general categories. I. Multiplications and comultiplications. Mathematische Annalen 145 (1961/1962), 227255.CrossRefGoogle Scholar
8Evans, T.. Endomorphisms of abstract algebras. Proceedings of the Royal Society of Edinburgh, Section A: Mathematics 66 (1962), 5364.Google Scholar
9Fiedorowicz, Z. and Vogt, R. M.. An additivity theorem for the interchange of E n-structures. Advances in Math. 273 (2015), 421484.CrossRefGoogle Scholar
10Fresse, B.. Modules over operads and functors. Lecture Notes in Mathematics, 1967, 314 pp (Berlin: Springer-Verlag, 2009).CrossRefGoogle Scholar
11Godement, R.. Topologie Algébrique et Théorie des Faisceaux. Actualités Scientifiques et Industrielles, 1252, vol. 1, 283 pp (Hermann, Paris: Publications de l'lnstitut de Mathématique de I'Université de Strasbourg XIII, 1958).Google Scholar
12Kock, J.. Note on commutativity in double semigroups and two-fold monoidal categories. J. Homotopy Relat. Str. 2 (2007), 217228.Google Scholar
13Loday, J.-L. and Vallette, B.. Algebraic operads. Grundlehren der Mathematischen Wissenschaften, vol. 346 (Berlin-Heidelberg: Springer-Verlag, 2012).CrossRefGoogle Scholar
14Maia, M. and Méndez, M.. On the arithmetic product of combinatorial species. Discrete Math. 308 (2008), 54075427.CrossRefGoogle Scholar
15Sloane, N. J. A. (ed.) The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org.Google Scholar