Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T02:46:22.275Z Has data issue: false hasContentIssue false

Bifurcations near a multiple eigenvalue of the rectangular plate problem

Published online by Cambridge University Press:  14 November 2011

Zoltán Sadovský
Affiliation:
Institute of Construction and Architecture of the Slovak Academy of Sciences, 842-20 Bratislava, Czechoslovakia

Synopsis

We consider the bifurcation problem of the Föppl–Kármán equations for a thin elastic rectangular plate near a multiple eigenvalue allowing for a small perturbation parameter related to the aspect ratio of the plate. The first step in the study is to introduce equivalent operator equations in the energy spaces of the problem which explicitly contain the perturbation parameter. By dealing partially with a general formulation, we obtain the main results for the double eigenvalue and Z2Z2 symmetry of bifurcation equations. We are chiefly interested in the degenerate cases of bifurcation equations.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Knightly, G. H. and Sather, D.. Nonlinear buckled states of rectangular plates. Arch. Rational Mech. Anal. 54 (1974), 356372.CrossRefGoogle Scholar
2Matkowsky, B. J. and Putnick, L. J.. Multiple buckled states of rectangular plates. Internal. J. Non-Linear Mech. 9 (1974), 89103.CrossRefGoogle Scholar
3Bauer, L., Keller, H. B. and Reiss, E. L.. Multiple eigenvalues lead to secondary bifurcation. SIAM Rev. 17 (1975), 101122.CrossRefGoogle Scholar
4Chow, S. N., Hale, J. K. and Mallet-Paret, J.. Applications of generic bifurcation, II. Arch. Rational Mech. Anal. 62 (1976), 209235.CrossRefGoogle Scholar
5Chow, S. N. and Hale, J. K.. Methods of Bifurcation Theory (Berlin: Springer, 1982).CrossRefGoogle Scholar
6List, S. E.. Generic bifurcation with application to the von Kármán equations. J. Differential Equations 30 (1978), 89118.CrossRefGoogle Scholar
7Keener, J. P.. Secondary bifurcation and multiple eigenvalues. SIAM J. Appl. Math. 37 (1979), 330349.CrossRefGoogle Scholar
8Golubitsky, M. and Schaeffer, D.. A theory for imperfect bifurcation via singularity theory. Comm. Pure Appl. Math. 32 (1979), 2198.CrossRefGoogle Scholar
9. Golubitsky, M. and Schaeffer, D.. Imperfect bifurcation in the presence of symmetry. Comm. Math. Phys. 67 (1979), 205232.CrossRefGoogle Scholar
10Schaeffer, D. and Golubitsky, M.. Boundary conditions and mode jumping in the buckling of a rectangular plate. Comm. Math. Phys. 69 (1979), 209230.CrossRefGoogle Scholar
11Shearer, M.. Secondary bifurcation near a double eigenvalue. SIAM J. Math. Anal. 11 (1980), 365389.CrossRefGoogle Scholar
12Sattinger, D. H.. Group Theoretic Methods in Bifurcation Theory. Lecture Notes in Mathematics 762 (Berlin: Springer, 1979).Google Scholar
13Vanderbauwhede, A.. Local Bifurcation and Symmetry (London: Pitman, 1982).Google Scholar
14Berger, M. S.. On von Kármán's equations and the buckling of a thin elastic plate, I, The clamped plate. Comm. Pure Appl. Math. 20 (1967), 687719.CrossRefGoogle Scholar
15Vanderbauwhede, A.. Generic and nongeneric bifurcation for the von Kármán equations. J. Math. Anal. Appl. 66 (1978), 550573.CrossRefGoogle Scholar
16McLeod, J. B. and Sattinger, D.. Loss of stability and bifurcation at a double eigenvalue. J. Fund. Anal. 14 (1973), 6284.CrossRefGoogle Scholar
17Sadovský, Z.. Rectangular thin elastic plate with edges “remaining straight” during the deformation. Apl. Mat. 20 (1975), 378386.Google Scholar
18Matkowsky, B. J., Putnick, L. J. and Reiss, E. L.. Secondary states of rectangular plates. SIAM J. Appl. Math. 38 (1980), 3851.CrossRefGoogle Scholar
19Sadovsk, Z.ý. The problem of long elastic thin plate panel of asymmetrical I cross-section in pure bending. Acta Tech. ČSAV 23 (1978), 576592.Google Scholar
20Vainberg, M. M. and Trenogin, V. A.. Theory of Branching of Solutions of Non-Linear Equations (Leyden: Noordhoff, 1974). (Translation from the Russian (Moscow: Nauka, 1969).)Google Scholar
21Krasnoselski, M. A. et al. Approximate Solution of Operator Equations (in Russian) (Moscow: Nauka, 1969).Google Scholar