Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T18:16:34.753Z Has data issue: false hasContentIssue false

Bifurcation for quasilinear elliptic equations on Rn with natural growth conditions

Published online by Cambridge University Press:  14 November 2011

Cao Daomin
Affiliation:
Wuhan Institute of Mathematical Sciences, Academia Sinica, P.O. Box 30, Wuhan 430071, P. R. China
Li Gongbao
Affiliation:
Wuhan Institute of Mathematical Sciences, Academia Sinica, P.O. Box 30, Wuhan 430071, P. R. China
Yan Shusen
Affiliation:
Wuhan Institute of Mathematical Sciences, Academia Sinica, P.O. Box 30, Wuhan 430071, P. R. China

Synopsis

We consider the following eigenvalue problem:

We prove the existence of H1(Rn)∩L(Rn) bifurcation at λ=0 but only require aij(x, t) (i,j= 1, 2, …,n) and f(x, t) to satisfy certain conditions in theneighbourhood of Rn × {0}.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Giaquita, M.. Multiple Integrals in the Calculus of Variations and non-linear Elliptic Systems (Princeton, N.J.: Princeton University Press, 1983).Google Scholar
2Ladyzhenskaya, O. A. and Uraltseva, N. N.. Linear and Quasilinear Elliptic Equation (Beijing: Science Press, 1987) (in Chinese).Google Scholar
3Li, G. B.. Eigenvalue problems of quasilinear elliptic systems on R n. Rev.Mat. Iberoamericana 3 (1989).Google Scholar
4Lions, P. L.. The concentration—compactness principle in the calculus of variations. The locally compact case, Part. 2. Ann. Inst. H. Poincare Anal. Non-Linéaire 1 (1984), 223283.CrossRefGoogle Scholar
5Shen, Y. T.. Eigenvalue problem of quasilinear elliptic systems. Acta Math. Sinica 31 (1988), 845849.Google Scholar
6Struwe, M.. Quasilinear elliptic eigenvalue problems. Comment. Math. Helv. 58 (1983), 509527.CrossRefGoogle Scholar
7Stuart, C. A.. Bifurcation for variational problems when the linearisation has no eigenvalues. J. Fund. Anal. 38 (1980), 169187.CrossRefGoogle Scholar
8Stuart, C. A.. Bifurcation for Dirichlet problems without eigenvalues. Proc. London Math. Soc. (3) 45 (1982), 169192.CrossRefGoogle Scholar
9Stuart, C. A.. Bifurcation in L P(R n) for a semilinear equation. J. Differential Equations 64 (1980), 294316.CrossRefGoogle Scholar
10Stuart, C. A.. Bifurcation in L P(R n) for a semilinear elliptic equation (preprint).Google Scholar
11Yan, S. S. and Li, G. B.. Existence of nontrivial solution of quasilinear elliptic eigenvalue problem on R n with natural growth conditions. Acta Math. Sci. (to appear).Google Scholar
12Zhu, X. P. and Zhou, H. S.. Bifurcation from the essential spectrum of suplinear elliptic equations. Appl. Anal. 28 (1988), 5166.Google Scholar