Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:08:27.810Z Has data issue: false hasContentIssue false

The best Sobolev trace constant as limit of the usual Sobolev constant for small strips near the boundary

Published online by Cambridge University Press:  14 July 2008

José M. Arrieta
Affiliation:
Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Madrid 28040, Spain ([email protected]; [email protected])
Aníbal Rodríguez-Bernal
Affiliation:
Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Madrid 28040, Spain ([email protected]; [email protected])
J. D. Rossi
Affiliation:
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina ([email protected]) Present address: IMDEA-Matemáticas, C-IX, Universidad Autónoma de Madrid, Campus Cantoblanco, Madrid, Spain

Abstract

In this paper we prove that the best constant in the Sobolev trace embedding $H^1(\varOmega)\hookrightarrow L^q(\partial\varOmega)$ in a bounded smooth domain can be obtained as the limit as $\varepsilon\to0$ of the best constant of the usual Sobolev embedding $H^1(\varOmega) \hookrightarrow L^q(\omega_\varepsilon,\mathrm{d} x/\varepsilon)$, where $\omega_\varepsilon=\{x\in\varOmega:\mathrm{dist}(x,\partial\varOmega)<\varepsilon\}$ is a small neighbourhood of the boundary. We also analyse symmetry properties of extremals of the latter embedding when $\varOmega$ is a ball.

Type
Research Article
Copyright
2008 Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)