Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-21T22:46:32.105Z Has data issue: false hasContentIssue false

Asymptotics of the Titchmarsh—Weyl m-coefficient for non-integrable potentials

Published online by Cambridge University Press:  14 November 2011

F. V. Atkinson
Affiliation:
University of Toronto, Department of Mathematics, Toronto, Ontario, CanadaM5S 1A1
C. T. Fulton
Affiliation:
Florida Institute of Technology, Applied Mathematics Program, Melbourne, FL 32901, USA

Extract

Asymptotic formulae for the Titchmarsh—Weyl m-coefficient on rays in the complex λ-plane for the equation − y ″ + qy = λy whenthe potential is limit circle and non-oscillatory at x = 0 are obtained under assumptions slightly more general than xq(x) ∈ L1(0,c). The behaviour of q at the right end-point is arbitrary and may fall in either the limit-point or limit-circle case. A method of regularization of the equation is given that can be made to depend either on a solution of the equation for λ = 0 or more directly on an approximation to the solution in terms of q. This enables equivalent definitions of the m-coefficient to be given for the singular Sturm—Liouville problem associated with a singular limit-circle boundary condition, and its associatedregular Sturm—Liouville problem. As a consequence, it becomes possible to apply asymptotic results obtained by Atkinson for the regular problem in order to give asymptoticresults for the singular problem. Potentials of the form q(x) = C/xj, 1 ≤ j < 2, are included. In the case j = 1, an independent calculation of the limit-point m-coefficient over the range (0,∞), relying on Whittaker functions, verifies the main result.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Atkinson, F. V.. On the location of the Weyl circles. Proc. R. Soc. Edinb. A 88 (1981), 345356.CrossRefGoogle Scholar
2Atkinson, F. V.. On the asymptotic behavior of the Titchmarsh—Weyl m-coefficient and the spectral function for scalar second-order differential expressions. Lecture Notes in Mathematics, no. 964, pp. 127 (Berlin: Springer, 1982).Google Scholar
3Atkinson, F. V. and Fulton, C. T.. Asymptotics of Sturm—Liouville eigenvalues for problems on a finite interval with one limit-circle singularity, I. Proc. R. Soc. Edinb. A 99 (1984), 5170.CrossRefGoogle Scholar
4Dunford, N. and Schwartz, J. T.. Linear operators II (New York: Interscience, 1963).Google Scholar
5Everitt, W. N.. On a property of the m-coefficient of a second-order linear differential equation. J. Lond. Math. Soc. 4 (1972), 443457.CrossRefGoogle Scholar
6Everitt, W. N. and Bennewitz, C.. Some remarks on the Titchmarsh—Weyl m-coefficient. In A Tribute to Åke Pleijel, Uppsala Universiteit, Uppsala, 1980, pp. 49108.Google Scholar
7Everitt, W. N. and Halvorsen, S. G.. On the asymptotic form of the Titchmarsh—Weylm-coefficient. Applicable Analysis 8 (1978), 153169.CrossRefGoogle Scholar
8Fulton, C. T.. Parametrizations of Titchmarsh's m(λ)-functions in the limit-circle case. Trans. Am. Math. Soc. 229 (1977), 5163.Google Scholar
9Fulton, C. T.. Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions. Proc. R. Soc. Edinb. A 87 (1980), 134.CrossRefGoogle Scholar
10Fulton, C. T.. Asymptotics of the m-coefficient for eigenvalue problems with eigenparameter in the boundary conditions. Bull. Lond. Math. Soc. 13 (1981), 547556.CrossRefGoogle Scholar
11Halvorsen, S. G.. Asymptotics of the Titchmarsh—Weyl m-functions: a Bessel-approximative case. In Proc. Int. Conf. on Differential Equations, Birmingham, AL, pp. 271277 (Elsevier Science, 1984).Google Scholar
12Harris, B. J.. The asymptotic form of the Titchmarsh—Weyl m-function. J. Lond. Math. Soc. 30 (1984), 110118.CrossRefGoogle Scholar
13Harris, B. J.. The asymptotic form of the spectral functions associated with a class of Sturm—Liouville equations. Proc. R. Soc. Edinb. A 100 (1985), 343360.CrossRefGoogle Scholar
14Harris, B. J.. The asymptotic form of the Titchmarsh—Weyl m-function associated with a second-order differential equation with locally integrable coefficient. Proc. R. Soc. Edinb. A 102 (1986), 243251.CrossRefGoogle Scholar
15Harris, B. J.. The asymptotic form of the Titchmarsh—Weyl m-coefficient for second-order linear differential equations with analytic coefficient. J. Diff. Eqns 65 (1986), 219234.CrossRefGoogle Scholar
16Harris, B. J.. A property of the asymptotic series for a class of Titchmarsh—Weyl m-functions. Proc. R. Soc. Edinb. A 102 (1986), 253257.CrossRefGoogle Scholar
17Hartman, P.. Ordinary differential equations (New York: Wiley, 1964).Google Scholar
18Hehenberger, M., Froelich, P. and Brändäs, E.. Weyl's theory appliedto predissociation by rotation. II. Determination of resonances and complex eigenvalues: application to HgH. J. Chem. Phys. 65 (1976), 45714574.CrossRefGoogle Scholar
19Hehenberger, M., Froelich, P. and Brandas, E.. Wey's theory applied to predissociation by rotation. I. Mercury hydride. J. Chem. Phys. 65 (1976), 45594570.CrossRefGoogle Scholar
20Hinton, D. and Shaw, J. K.. Some extensions of results of Titchmarsh on Dirac systems. In Proc. 1984 Workshop, Spectral Theory of Sturm—Liouville Differential Operators ANL-84- 73, Argonne National Laboratory, 1984 (ed. Kaper, H. G. and Zettl, A.).Google Scholar
21Hinton, D. and Shaw, J. K.. Absolutely continuous spectra of second-order differential operators with short and long range potentials. SIAM J. Math. Analysis 17 (1986), 182196.CrossRefGoogle Scholar
22Jörgens, K. and Rellich, F.. Eigenwerttheorie gewöhnlicher Differential-gleichungen (Berlin: Springer, 1976).CrossRefGoogle Scholar
23Kaper, H. G. and Kwong, M. K.. Asymptotics of the Titchmarsh—Weyl m-coefficient for integrable potentials. Proc. R. Soc. Edinb. A 103 (1986), 347358.CrossRefGoogle Scholar
24Kaper, H. G., Kwong, M. K. and Zettl, A.. Regularizing transformations for certain singular Sturm—Liouville boundary-value problems. SIAM J. Math. Analysis 15 (1984), 957963.CrossRefGoogle Scholar
25Magnus, W., Oberhettinger, F. and Soni, R. P.. Formulas and theroems for the special functions of mathematical physics, 3rd edn (Berlin: Springer, 1966).CrossRefGoogle Scholar
26Newton, R. G.. Scattering theory of waves and particles (New York: McGraw-Hill, 1966).Google Scholar
27Rellich, F.. Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung. Math. Ann. 122 (1951), 343368.CrossRefGoogle Scholar
28Schechter, M.. Operator methods in quantum mechanics (New York: North-Holland, 1981).Google Scholar
29Titchmarsh, E. C.. Eigenfunction expansions associated with second-order differential equations I, 2nd edn (Oxford: Clarendon, 1962).CrossRefGoogle Scholar