Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T01:42:30.940Z Has data issue: false hasContentIssue false

Asymptotics and deficiency indices for certain pairs of differential operators

Published online by Cambridge University Press:  14 November 2011

B. L. J. Braaksma
Affiliation:
Department of Mathematics, University of Groningen, Netherlands

Synopsis

Asymptotic approximations to solutions of perturbations of Meijer's differential equation are derived. These are used to determine deficiency indices for certain subspaces associated with related pairs of symmetric differential expressions.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bennewitz, C.. Spectral theory for pairs of differential operators. Ark. Mat. 15 (1977), 3361.CrossRefGoogle Scholar
2Coddington, E. A.. Extension theory of formally normal and symmetric subspaces. Mem. Amer.Math. Soc. 134 (1973).Google Scholar
3Coddington, E. A. and de Snoo, H. S. V.. Differential subspaces associated with pairs of ordinary differential expressions. J. Differential Equations 35 (1980), 129182.CrossRefGoogle Scholar
4Dunford, N. and Schwartz, J. T.. Linear Operators, Part II (New York: Interscience, 1963).Google Scholar
5Dijksma, A. and de Snoo, H. S. V.. Self-adjoint extensions of symmetric subspaces. Pacific J. Math. 54 (1974), 71100.CrossRefGoogle Scholar
6Eastham, M. S. P.. Asymptotic theory and deficiency indices for differential equations of odd order. Proc. Roy. Soc. Edinburgh Sect. A 90 (1981), 263279.CrossRefGoogle Scholar
7Eastham, M. S. P.. On the number of solutions of right-definite problems with a convergent Dirichlet integral. Proc. Roy. Soc. Edinburgh Sect. A 91 (1982), 347360.Google Scholar
8Eastham, M. S. P.. The deficiency index of even-order differential equations. J. London Math. Soc. 26 (1982), 113116.CrossRefGoogle Scholar
9Eastham, M. S. P. and Grudniewicz, C. G. M.. Asymptotic theory and deficiency indices for higher order self-adjoint differential equations. J. London Math. Soc. 24 (1981), 255271.CrossRefGoogle Scholar
10Everitt, W. N. and Zettl, A.. Generalized symmetric ordinary differential expressions I: the general theory. Nieuw Arch. Wisk. 27 (1969), 363397.Google Scholar
11Kato, T.. Perturbation theory for linear operators (Berlin: Springer, 1966).Google Scholar
12Kogan, V. I. and Rofe-Beketov, F. S.. On square-integrable solutions of symmetric systems of differential equations of arbitrary order. Proc. Roy. Soc. Edinburgh Sect. A 74 (1974/1975), 540.Google Scholar
13Luke, Y. L.. The special functions and their approximations, vol. I (New York: Academic Press 1969).Google Scholar
14Meijer, C. S.. On the G-function. Proc. Kon. Nederl. Akad. Wetensch. 49 (1946), 227–237, 344–356, 457–469, 632–641, 765–772, 936–943, 1063–1072, 11651175.Google Scholar
15Naimark, M. A.. Linear differential operators, Part II (London: Harrap, 1968).Google Scholar
16Niessen, H.-D.. Singuläre S-hermitesche Rand-Eigenwertprobleme. Manuscripta Math. 3 (1970), 3568.Google Scholar
17Niessen, H.-D. und Schneider, A.. Integraltransformationen zu singulären S-hermiteschen Rand-Eigenwertproblemen. Manuscripta Math. 5 (1971), 133145.CrossRefGoogle Scholar
18Orcutt, B. C.. Canonical differential equations (Univ. of Virginia Ph.D. Thesis, 1969).Google Scholar
19Paris, R. B. and Wood, A. D.. On the L 2 nature of solutions of nth order symmetric differential equations and McLeod's conjecture. Proc. Roy. Soc. Edinburgh Sect. A 90 (1981), 209236.CrossRefGoogle Scholar
20Pleijel, Å.. A survey of spectral theory for pairs of ordinary differential operators. Lecture Notes in Mathematics 448 (Berlin: Springer, 1975).Google Scholar
21Schneider, A.. Zur Einordnung selbstadjungierter Rand-Eigenwertprobleme bei gewöhnlichen Differentialgleichungen in die Theorie S-hermitescher Rand-Eigenwertproblemen. Math. Ann. 178 (1968), 277294.Google Scholar
22Schneider, A. und Niessen, H.-D.. Linksdefinite singuläre kanonische Eigenwertprobleme I. J. Reine Angew. Math. 281 (1976), 1357;Google Scholar
II. Schneider, A. und Niessen, H.-D.. Linksdefinite singuläre kanonische Eigenwertprobleme I. J. Reine Angew. Math. 289 (1977), 6284.Google Scholar