Published online by Cambridge University Press: 23 July 2021
In this study, we are concerned with the asymptotic stability towards a rarefaction wave of the solution to an outflow problem for the Navier-Stokes Korteweg equations of a compressible fluid in the half space. We assume that the space-asymptotic states and the boundary data satisfy some conditions so that the time-asymptotic state of this solution is a rarefaction wave. Then we show that the rarefaction wave is non-linearly stable, as time goes to infinity, provided that the strength of the wave is weak and the initial perturbation is small. The proof is mainly based on $L^{2}$-energy method and some time-decay estimates in $L^{p}$-norm for the smoothed rarefaction wave.