Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Harris, B. J.
1986.
A property of the asymptotic series for a class of Titchmarsh–Weyl m-functions.
Proceedings of the Royal Society of Edinburgh: Section A Mathematics,
Vol. 102,
Issue. 3-4,
p.
253.
Harris, B. J.
1986.
The asymptotic form of the Titchmarsh–Weyl m-function associated with a second order differential equation with locally integrable coefficient.
Proceedings of the Royal Society of Edinburgh: Section A Mathematics,
Vol. 102,
Issue. 3-4,
p.
243.
Harris, B.J
1986.
The asymptotic form of the Titchmarsh-Weyl m-function for second-order linear differential equations with analytic coefficients.
Journal of Differential Equations,
Vol. 65,
Issue. 2,
p.
219.
Harris, B.J.
1987.
The form of the spectral functions associated with a class of Sturm–Liouville equations with integrable coefficient.
Proceedings of the Royal Society of Edinburgh: Section A Mathematics,
Vol. 105,
Issue. 1,
p.
215.
Harris, B.J.
1988.
An inverse problem involving the Titchmarsh–Weyl m-function.
Proceedings of the Royal Society of Edinburgh: Section A Mathematics,
Vol. 110,
Issue. 3-4,
p.
305.
Eastham, M.S.P
1997.
The Asymptotic Nature of Spectral Functions in Sturm–Liouville Problems with Continuous Spectrum.
Journal of Mathematical Analysis and Applications,
Vol. 213,
Issue. 2,
p.
573.
Harris, B. J.
1997.
The form of the spectral functions associated with Sturm‐Liouville problems with continuous spectrum.
Mathematika,
Vol. 44,
Issue. 1,
p.
149.
Eastham, M. S. P.
1998.
The asymptotic form of the spectral function in Sturm–Liouville problems with a large potential like −xc(c ≦ 2).
Proceedings of the Royal Society of Edinburgh: Section A Mathematics,
Vol. 128,
Issue. 1,
p.
37.
Harris, B.J.
1998.
The Form of the Spectral Functions Associated with Sturm–Liouville Equations with Large Negative Potential.
Journal of Mathematical Analysis and Applications,
Vol. 222,
Issue. 2,
p.
569.
Fulton, C. T.
and
Pruess, S.
1998.
The computation of spectral density functions for singular Sturm-Liouville problems involving simple continuous spectra.
ACM Transactions on Mathematical Software,
Vol. 24,
Issue. 1,
p.
107.
Atkinson, F. V.
and
Fulton, C. T.
1999.
Asymptotics of the Titchmarsh—Weyl m-coefficient for non-integrable potentials.
Proceedings of the Royal Society of Edinburgh: Section A Mathematics,
Vol. 129,
Issue. 4,
p.
663.
Печенцов, Александр Сергеевич
Pechentsov, Alexander Sergeevich
Попов, Антон Юрьевич
and
Popov, Anton Yur'evich
2004.
Асимптотическое поведение плотности спектральной меры сингулярного оператора Штурма - Лиувилля.
Математические заметки,
Vol. 75,
Issue. 3,
p.
455.
Pechentsov, A. S.
and
Popov, A. Yu.
2006.
Asymptotic behavior of the density of the spectral measure of the Sturm-Liouville operator on the half-line with the boundary condition y(0) = 0.
Differential Equations,
Vol. 42,
Issue. 10,
p.
1404.
Pechentsov, A. S.
and
Popov, A. Yu.
2007.
Asymptotic behavior of the spectral measure density of a singular Sturm-Liouville operator as λ → −∞.
Doklady Mathematics,
Vol. 75,
Issue. 3,
p.
374.
Pechentsov, A. S.
and
Popov, A. Yu.
2007.
Asymptotic behavior of the density of the spectral measure of the Sturm-Liouville singular operator.
Journal of Mathematical Sciences,
Vol. 142,
Issue. 3,
p.
2172.
Pechentsov, A. S.
and
Popov, A. Yu.
2008.
Spectral asymptotics of the Sturm-Liouville operator on the half-line with potential tending to −∞ : I.
Differential Equations,
Vol. 44,
Issue. 5,
p.
659.