Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T01:33:54.015Z Has data issue: false hasContentIssue false

Application des méthodes de convexité et monotonie a l'étude de certaines équations quasi linéaires

Published online by Cambridge University Press:  14 February 2012

H. Attouch
Affiliation:
Université de Paris-Sud, 91405 Orsay
A. Damlamian
Affiliation:
Université de Paris-Sud, 91405 Orsay

Synopsis

Using Hilbert space methods, existence and uniqueness are proved for the solution of some strongly non-linear partial differential equations of elliptic and parabolic type.

They are associated with quasi-linear operators of the form: -div(β(x, grad u)) + β0(x, u) where β (resp β0) is a maximal monotone subdifferential on ℝN(resp ℝ) depending smoothly on x in a bounded domain Ω of ℝN

These operators are shown to be the subdifierentials over Lp(Ω) of convex functional of the following type:

where j is a normal convex integrand over Ω×ℝN+1 satisfying a coerciveness condition.

This method avoids the theory of Sobolev-Orlicz spaces. An application is given also forthe gas-diffusion equation over ℝ+.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Attouch, H. and Damlamian, A.. Problemes d'èvolution dans les Hilbert et applications. J.Math. Pures. App. 54 (1975), 5374.Google Scholar
2Attouch, H. and Damlamian, A.. Solutions fortes d'inéquations variationelles d'évolution, to appear.Google Scholar
3Benilan, P.. Equations d'évolution dans un espace de Banach quelconque etapplications (Thése). Publ. Math. d'Orsay 25 (1972).Google Scholar
4Benilan, P.. Cows de 3éme Cycle. (Paris Univ., 1974–75).Google Scholar
5Brezis, H.. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. Lecture Notes 5 (Amsterdam: North-Holland, 1972).Google Scholar
6Cannon, J. and Primicerio, M.. A two phase Stefan problem with temperature boundary conditions. Ann. Mat. Pura. Appl. 88 (1971), 177192.CrossRefGoogle Scholar
7Yui-Lin, Czou, Kalasnikov, A. and Oleinik, O.. The Cauchy problem and boundary problems for equations of the type of non-stationary filtration. Izv. Akad. Nauk Ser. Mat. SSSR 22 (1958), 667704.Google Scholar
8Damlamian, A.. Non-linear evolution equations with variable norms (Harvard Univ.Thesis, 1974).Google Scholar
9Damlamian, A.. Problémes aux limites non-linéaires du type du probléme de Stefan, et inéquations variationnelles d'évolution (Paris Univ. Thesis, 1976).Google Scholar
10Dunford, N. and Schwartz, J.. Linear operators, I (New York: Interscience, 1958).Google Scholar
11Ekeland, I. and Temam, R.. Analyse convexe et problemes variationnels (Paris: Gauthier, 1974).Google Scholar
12Fourgeres, A.. Operateurs elliptiques du calcul des variations ä coefficients trés fortement non linéaires. C. R. Acad. Si. Paris Sér. A, 274 (1972), 763766.Google Scholar
13Friedman, A.. One dimensional Stefan problems with non-monotone free boundary. Trans Amer. Math. Soc. 132 (1968), 89114.CrossRefGoogle Scholar
14Gossez, J. P.. Boundary value problems for quasi-linear elliptic equations with rapidly increasing coefficients. Bull. Amer. Math. Soc. 78 (1972), 753758.CrossRefGoogle Scholar
15Gossez, J. P.. Non-linear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. Trans. Amer. Math. Soc. 190 (1974), 163205.CrossRefGoogle Scholar
16Gossez, J. P. and Hess, P.. Sur certains problémes aux limites elliptiques fortement non-linéaires. C. R. Acad. Sci. Paris Ser. A, 278 (1974), 343345.Google Scholar
17Kamenomostskaya, S. L.. On Stefan's problem. Mat. Sb. 95 (1961), 489514.Google Scholar
18Moreau, J. J.. Fonctionnelles convexes. Séminaire sur les équations aux dérivées partielles (Paris: Collége de France, 1967).Google Scholar
19Oleinik, O.. On some degenerate quasilinear parabolic equations. Seminari 1962–63 Anal. Alg. Geom. e Topoi, 1st Naz. Alta Mat. 1 (1965), 355371 (Rome: Cremonese, 1965).Google Scholar
20Peletier, L. A.. Quasi-linear elliptic and parabolic equations. (Minneapolis: Univ. Minnesota, 1972).Google Scholar
21Robert, J.. Inéquations variationnelles paraboliques fortement non-linéaires. J.Math. Pures App. 53 (1974), 299321.Google Scholar
22Robert, J.. Equations d'évolution paraboliques. Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 3 (1974), 247259.Google Scholar
23Rockafellar, R. T.. Integrals which are convex functionals. Pacific J. Math. 24(1968), 525539.CrossRefGoogle Scholar
24Rockafellar, R. T.. Integrals which are convex functionals II. Pacific J. Math. 39 (1971), 439469.CrossRefGoogle Scholar
25Stampacchia, G.. Equations élliptiques du second ordre à coefficients discontinus. Seminaire de Math. Superieures (Montreal: Univ. 1965).Google Scholar
26Vaudene, R.. Minimisation de fonctionnelles intégrales a croissance rapide. C. R. Acad. Sci. Paris Ser. A, 278 (1974), 2528.Google Scholar