Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-01T04:39:21.528Z Has data issue: false hasContentIssue false

Another positivity result for determinantal operators

Published online by Cambridge University Press:  14 November 2011

Paul Binding
Affiliation:
Department of Mathematics and Statistics, University of Calgary, Alberta, Canada T2N 1N4 and Control Theory Centre, University of Warwick, Coventry, EnglandCV4 7 AL

Synopsis

Let Vrs, s = 1 … k, be Hermitian operators on separable Hilbert spaces Hr, r = 1 … k. For x = x1⊗ … ⊗ xkH = H1⊗…Δx⊗ by the formal determinantal expansion ⊗ det [Vrsxr Δ is then extended by linearity and continuity to H. It is shown that a positive definiteness condition on Δ need be checked only for decomposable tensors like x. Applications are given to several conditions in the multiparameter eigenvalue literature.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Atkinson, F.. Multiparameter Eigenvalue Problems I: Matrices and Compact Operators (New York: Academic Press, 1972).Google Scholar
2Binding, P. and Browne, P.. Positivity results for determinantal operators. Proc. Roy. Soc. Edinburgh Sect. A 81 (1978), 267271.CrossRefGoogle Scholar
3Binding, P. and Browne, P.. A variational approach to multi-parameter eigenvalue problems in Hilbert space. SIAM J. Math. Anal. 9 (1978), 10541067.CrossRefGoogle Scholar
4Browne, P.. Multi-parameter spectral theory. Indiana Univ. J. Math. 24 (1974), 249257.CrossRefGoogle Scholar
5Källström, A. and Sleeman, B.. A left definite multiparameter eigenvalue problem in ordinary differential equations. Proc. Roy. Soc. Edinburgh Sect. A 74 (1975), 145155.CrossRefGoogle Scholar
6Källström, A. and Sleeman, B.. Solvability of a linear operator system. J. Math. Anal. Appl. 55 (1976), 785793.CrossRefGoogle Scholar
7Källström, A. and Sleeman, B.. Multiparameter spectral theory. Ark. Mat. 15 (1977), 9399.CrossRefGoogle Scholar
8Sleeman, B.. Multiparameter spectral theory in Hilbert space. J. Math. Anal. Appl. 65 (1978), 511530.CrossRefGoogle Scholar