Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T23:23:04.377Z Has data issue: false hasContentIssue false

An exterior boundary-value problem for the Maxwell equations with boundary data in a Sobolev space

Published online by Cambridge University Press:  14 November 2011

Peter Hähner
Affiliation:
Institut für Numerische und Angewandte Mathematik, Lotzestraße 16–18, D-3400 Göttingen, Federal Republic of Germany

Synopsis

We treat the time-harmonic Maxwell equations in an exterior domain with prescribed boundary data [n, E] in the Sobolev space of square integrable tangential fields with square integrable surface divergence. By using boundary integral equation methods, existence and uniqueness results are established. Furthermore, we investigate the completeness of electric and magnetic dipoles distributed on an inner surface in this Sobolev space.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Colton, D. and Kress, R.. Integral equation methods in scattering theory (New York: Wiley, 1983).Google Scholar
2Kersten, H.. Grenz- und Sprungrelationen für Potentiale mit quadratsummierbarer Flächenbelegung. Resultate Math. 3 (1980) 1724.CrossRefGoogle Scholar
3Kersten, H.. Die Lösung der Maxwellschen Gleichungen durch vollständige Flächenfeldsysteme. Math. Methods Appl. Sci. 7 (1985) 4045.CrossRefGoogle Scholar
4Kirsch, A.. Generalized boundary-value and control problems for the Helmholtz equation(Habilitation thesis, Göttingen, 1984).Google Scholar
5Kress, R.. On the boundary operator in electromagnetic scattering. Proc. Roy. Soc. Edinburgh Sect. A 103 (1986) 9198.CrossRefGoogle Scholar
6Lax, P. D.. Symmetrizable linear transformations. Comm. Pure Appl. Math. 7 (1954) 633–647.CrossRefGoogle Scholar
7Mikhlin, S. G.. Mathematical physics, an advanced course (Amsterdam: North-Holland, 1970).Google Scholar
8Mikhlin, S. G. and Prossdorf, S.. Singular integral operators (Berlin: Springer, 1986).CrossRefGoogle Scholar
9Miranda, C.. Partial differential equations of elliptic type, 2nd edn. (Berlin: Springer, 1970).Google Scholar
10Miiller, C.. Foundations of the mathematical theory of electromagnetic waves (Berlin: Springer, 1969).CrossRefGoogle Scholar