No CrossRef data available.
Article contents
An ergodic theorem for asymptotically nonexpansive mappings
Published online by Cambridge University Press: 14 November 2011
Abstract
The purpose of this paper is to prove the following (nonlinear) mean ergodic theorem: Let E be a uniformly convex Banach space, let C be a nonempty bounded closed convex subset of E and let T: C → C be an asymptotically nonexpansive mapping. If
exists uniformly in r = 0, 1, 2,…, then the sequence {Tnx} is strongly almost-convergent to a fixed point y of T, that is,
uniformly in i = 0, 1, 2, ….
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 124 , Issue 1 , 1994 , pp. 23 - 31
- Copyright
- Copyright © Royal Society of Edinburgh 1994
References
1Baillon, J. B.. Un thèorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert. C. R. Acad. Sci. Paris Sèr. I Math. 280 (1975), A1511–A1514.Google Scholar
2Baillon, J. B.. Quelques propèrtiès de convergence asymptotique pour les contractions impaires. C. R. Acad. Sci. Paris Sèr. I Math. 283 (1976), A587–A590.Google Scholar
3Baillon, J. B.. Quelques aspects de la théorie des points fixes dans les espaces de Banach I, II. (Seminaire d'Analyse Fonctionnelle 1978–1979, École Polytechnique, Centre de Mathématiques, Exposé 7, 8, November 1978.)Google Scholar
4Baillon, J. B., Bruck, R. E. and Reich, S.. On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. Houston J. Math. 4 (1978), 1–9.Google Scholar
5Bruck, R. E.. On the almost-convergence of iterates of a nonexpansive mapping in Hilbert space and the structure of the weak ω-limit set. Israel J. Math. 29 (1978), 1–16.CrossRefGoogle Scholar
6Bruck, R. E.. On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces. Israel J. Math. 38 (1981), 304–314.CrossRefGoogle Scholar
7Goebel, K. and Kirk, W. A.. A fixed point theorem for asymptotically nonexpansive mappings. Proc. Amer. Math. Soc. 35 (1972), 171–174.Google Scholar
8Kobayasi, K. and Miyadera, I.. On the strong convergence of the Cesaro means of contractions in Banach spaces. Proc. Japan Acad. Ser. A 56 (1980), 245–249.Google Scholar
9Lorentz, G. G.. A contribution to the theory of divergent sequences. Acta Math. 80 (1948), 167–190.CrossRefGoogle Scholar
10Reich, S.. Almost convergence and nonlinear ergodic theorems. J. Approx. Theory 24 (1978), 269–272.Google Scholar